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Preface

This book originates out of many years of teaching different courses at the
University of Roma Tor Vergata, although it includes so many applications for
diverse branches of Physics that I hope that many professional physicists will find it
of interest as well. It can serve as a textbook for second- and third-year students of
Physics and related disciplines that require being introduced to Theoretical Physics
at the level of the short degree. I develop all the mathematical methods, but the
main focus is on the physical meaning of the formalisms. I tried to make the book
fun and interesting by stimulating the reader’s curiosity about many more physical
effects than is usual in textbooks. These range from the measurement of stellar radii
to anyons, quantum pumping, entanglement, frame dragging, teleportation, black
holes, superconductivity and more. Physics is the only science in which theory and
experiment have comparable importance. Like in any other natural science,
experiment discerns what is true and what is false; however, in countless cases,
important discoveries are due to theoreticians making detailed predictions that
guided experimenters to verify new effects—antimatter was discovered theoreti-
cally by Dirac; many gravitational effects were predicted by Einstein; in quantum
electrodynamics, the progress of both theory and experiment pushed the agreement
to more than 10 significant digits. Thanks to theory, Physics is not just an immense
inventory of data, but has a coherent logic which can only be understood in terms of
ingenious and beautiful Mathematics.

More exercises can be found in a book by Michele Cini, Francesco Fucito and
Mauro Sbragaglia, Solved Problems in Quantum and Statistical Physics, Springer
Verlag Italia 2012. A more advanced treatment of Solid State Theory is presented in
Michele Cini, Topics and Methods in Condensed Matter Theory, Springer 2007.

Rome, Italy Michele Cini
October 2017
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Chapter 1
Theoretical Physics and Mathematics

Salvini:
It is true that the Copernican System perturbs Aristotle’s
Universe, but we are dealing with our Universe, the true, real
one.
From Galileo Galilei, Dialogue Concerning the Two Chief
World Systems

Following the method of Galileo, Theoretical Physics uses Mathematics as natural
and essential language to describe reality. But even Galileo would probably be sur-
prised by the degree of success of the mathematical description of the world. Simple
elegant laws like the Planck radiation formula agree with reality accurately over all
the electromagnetic spectrum; on the other hand, the need for abstract mathematical
concepts stemming from complex analysis, such as topology, Group Theory, and
infinite-dimensional spaces shows that the fabric of the Universe is highly nontriv-
ial. Is God a mathematician? is the title of an interesting book by Mario Livio. The
Nobel Laureate in Physics Eugene Wigner in 1960 spoke about the unreasonable
effectiveness of Mathematics in the understanding of Reality.1 Like Mathematics,
Physics involves a depth of thought that is unknown to most people; only well-posed
questions are permissible, and there is no room for puns, since scientists deal with
nothing but of verifiable facts, which one cannot simply adjust to make them fit with
one’s statements. In fact, there is progress, and every scientist contributes to building
something definitive, even if further progress may build on the new findings.

However, Theoretical Physics is not Mathematics. It has its own method of inves-
tigation and is subtle and concrete. While a Mathematician seeks the maximum of

1This opens the question as to whether the findings of mathematicians must be considered as
inventions like those of an artist or rather discoveries like those of a scientist. Personally I believe they
are discoveries, since there is an internal logic in the development ofMathematics, andMathematics
is the logic of Nature.

© Springer International Publishing AG, part of Springer Nature 2018
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2 1 Theoretical Physics and Mathematics

generality, the Theoretical Physicist must strive to give an operational meaning to all
the new statements. Experiment has the final word on controversies. All the state-
ments of a theorist make sense if they can be verified by experiment. This is not
so, for example, in the case of recurrent theories about the Multiverse, which are
often proposed but not of physical interest. Even the most abstract-looking aspects
of the theory have an operational meaning, at least in principle. One must make an
exception for Astrophysics, since a direct measurement of distances is not feasible
and we rely on the known Laws of Physics and the consistency of clues.

The philosopher Carl Popper has gained wide popularity by stressing that Science
comes from experiment, so each of its conclusions is provisional, and at risk of being
provedwrong the nextmorning by another experiment. This seems to removeScience
as a source of a sound knowledge. But scientists have always known that, and have no
orthodoxy to defend, and thus even try to test existing theories with ever increasing
precision measurements. Some discoveries have been completely unexpected and
new surprises are possible. Relativity and Quantum Mechanics have shown that the
extrapolation of physical laws to new ranges of phenomena is at risk. Besides, the
borderline between classical and Quantum Physics is still a matter of research. There
are quantum phenomena, like entanglement, that have been tested over distances on
the order of many kilometers in satellite experiments. Whatever new high energy
physics may be discovered, theMaxwell equations and the laws of Thermodynamics
are not in danger in regard to the wide range of phenomena for which they are
known to work fine. Nevertheless, the 10 digits precision of the agreement between
theory and experiment in Quantum Electrodynamics means that, besides the single
experiment, there is detailed and coherent understanding of many interdependent
facts. The Truth exists in Religions. By far, a great number of the conclusions in
Physics rank among the most sound knowledge that can exist. If somebody claims
the invention of the perpetual motion, or superluminal flight, the claim can be safely
ignored. The power of Science to increase the real grasp of Man and his ability to
solve problems cannot be questioned.

Let us start with some constants (Table1.1).2 In the current Theories, some of the
above values are really fundamental (�, c, G, e) and enter as empirical constants.
Nobody knows why the constants have such values, but a Universe with different
values (if possible) should look very different. Others are known combinations of the
former, while still others can be obtained through theories that are well established
or in progress. For example, QCD calculations of the mass of the proton have been
reported, in terms of quarkmasses, but such topics are outside the scope of the present
book.

Gwas thefirst constant to bediscovered (byNewton) andmeasured (byCavendish,
in 1798); Galileo tried to measure the speed of light with inadequate means; after the
order-of magnitude measurement by Rømer, we now know the much more accurate

2I am using both the International Units and the Gauss Units, since both are commonly used.
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Table 1.1 Some constants of Physics

Name Symbol Value Units

Avogadro number NA 6,022169 1023 mol−1

Gravity constant G 6,6732 10−11 N m2/Kg2

Boltzmann constant KB 1,380622 10−23 J/0K

Stefan-Boltzmann
constant

σ 5,66961 10−8 W/m2 ×0 K4

Speed of light c 2,99792458 108 m/s

Classical radius of the
electron

re = e2

2mc2
2,819489 10−15 m

Electron mass me 9,109558 10−31 Kg

Proton mass mp 1,672614 10−27 Kg

Neutron mass mn 1,674920 10−27 Kg

Planck’s constant h 6,626196 10−34 J s

Fine structure constant α = e2
�c

1
137,03602 Pure number, Gauss

units

Fine structure constant α = e2
2ε0hc

1
137,03602 Pure number, SI units

Flux quantum hc
e 4× 10−7 Gausscm2

Electronvolt eV 1,6 10−19 J

Proton magnetic
moment

μp 1,4106203 10−26 J/T

value c = 299792458m/s; theMaxwell equations, after a long crisis, led toRelativity.
The introduction of the Boltzmann constant started Statistical Mechanics and led to
a microscopic understanding of the Thermodynamic principles; the introduction of
h by Planck started Quantum Mechanics.

The introduction of these constants has marked the great conceptual conquests
that are sometimes called scientific revolutions. However, the term is too extreme.

It is true that Galileo tossed the Aristotle’s Physics into the basket, but Einstein’s
Relativity did not throw out Galileo, and Quantum Mechanics did not abolish Clas-
sical Physics.

The Mechanics of Galileo and Newton and its developments continue to be used
in the daily life; it describes well and correctly the motions of planets and stars; the
Solar System is explored through the classical equations. Simply put, it cannot be
extrapolated to high energies and to phenomena that are far from the experimental
conditions for which it was formulated. When c or h enter, we are outside the range
of validity.

Notably, the generalized theories are not obtained by fixing details of the old ones,
but require a new formalism and a set of new concepts; the older theories remain as
limiting cases of the general theories. Understanding of the physical laws proceeds
by successive layers. But we shall find that a deep part of the theory proceeds from
the special to the general theory without any discontinuity.
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Paradoxically, Science today has detractors and very active adversaries. But it
remains the best result ofman’s ingenuity, ourmost important resource. The intuitions
of the great scientists are unknown to most people but the effort wich is needed to
understand them is very rewarding.
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Chapter 2
Analytical Mechanics

In the mathematical formulation of the classical theory, we meet
key concepts that are needed in its extensions (Relativity,
Quantum Mechanics). Theoretical Physics is a large body of
knowledge, yet it is deeply unitary. No doubt, it begins here.

2.1 Galileo’s Revolution and Newton’s F = ma

Galileo1 contradicted all the ancient wisdom and doctrine when he established the
principle of inertia, clearly stated the principle of Relativity and measured the accel-
eration of gravity and the circular motion around the year 1600. His concept of
Mechanics contrasted with that of Aristotle, who wrote that a force was needed to
keep a body in motion; and Aristotle’s Physics had been given a holy status by the
Counter-Reformation. Then, Newton2 established the basic law of motion

1Galileo Galilei (Pisa 1564- Arcetri 1642) was the father of Modern Science. Professor of Math-
ematics in the University of Pisa since 1589, he moved to Padova and back to Pisa in 1611. He
conceived and stated the scientific method, and was equally gifted for experiment, theory and pub-
lication of the results. He also tried to measure the speed of light and built the first astronomical
telescope, becoming the founder of modern Astronomy. His Sidereus Nuncius (1610) is also a
literary masterpiece for its clear and very readable style. When he reported the discovery of the
Pianeti Medicei (Jupiter’s moons) and of the sunspots he was suspected of heresy. The foundations
of Mechanics are in hisDiscorsi e dimostrazioni matematiche intorno a due nuove scienze, attinenti
alla meccanica ed ai meccanismi locali, Leiden (1636). The book was published abroad because
of the persecutions by the Church, whose teaching was contrary to any motion of the Earth. He
avoided the stake thanks to his prudence and to good relations with the catholic hierarchy. He was
a friend of Pope Urbano VIII Barberini. Nevertheless he was taken to trial, forced to retract and
imprisoned for the rest of his life in Arcetri. Thereafter, life was very hard for scientists in Italy for
quite a long time.
2Isaac Newton (Woolsthorpe 1642-London 1727) was a professor in Cambridge since 1669; then
he had already invented Calculus, although his book De Methodis Serierum et Fluxionum was
published in 1671. The basic work about Mechanics is entitled Philosophiae naturalis principia
mathematica, Iussu societatis regiae, London (1687). He subsequently discovered the law of gravity,
and made discoveries in Optics. He also invented the calculus of variations. Unlike Galileo, he was

© Springer International Publishing AG, part of Springer Nature 2018
M. Cini, Elements of Classical and Quantum Physics,
UNITEXT for Physics, https://doi.org/10.1007/978-3-319-71330-4_2
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8 2 Analytical Mechanics

m−→a = −→
F ,

where −→a is the acceleration of a material point mass m under the action of a force−→
F . He also invented Calculus and gave this equation of motion the well known
differential form. Newton’s equation in one dimension reads:

m
d2x(t)

dt2
= Fx (2.1)

that is, mẍ = Fx . In terms of the momentum px = mẋ ,

ṗx = Fx . (2.2)

If F is known, this determines the law of motion x(t) as a function of the initial
conditions x(0), ẋ(0). The motion is then determined at all times. The laws of
classical mechanics are these; the reader at this point might suspect that the rest
of the chapter is just a series of examples of solution; instead there is a beautiful
theory that we must build. The initial motivation for developing a theory was that
the equation involves the second derivative and is not amenable to quadratures.

The conservative forces, which derive from a potential V (x) according to

Fx = −dV (x)

dx
, (2.3)

are a promising special case with which to start an investigation, since they are
easier. Along a trajectory x(t), the potential V (x(t)) varies at a rate V̇ = dV

dx ẋ ; then,
multiplying (2.1) by ẋ , one finds ẋmẍ − ẋ Fx = dE

dt , where E is the energy; this is
the law of energy conservation. It implies that

E = T + V (2.4)

is fixed. While V (x(t)) varies, the kinetic energy

T = m

2
ẋ2

also varies and the sum is constant. Equation (2.4) yields the integral of the motion

E = m

2
ẋ2 + V (x);

it links the first derivative ẋ and the constant E , and is much simpler to solve than
(2.1).

not persecuted, but highly honored in his own country, receiving prestigious commissions from the
Government.
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For a point mass in 3 dimensions, Newton’s equation is a vector equation, and
one writes:

−→
F (

−→r ) = −−→∇ V (
−→r ) : for a system of N point masses, the equations

are 3N ; interactions between particles produce coupled equations. Kinetic energies
add:

T =
N∑

i

3∑

α

mi

2
ẋ2i,α

(i runs over points and α over components of −→r i ).
Analytical mechanics allows us to apply the laws of Newton effectively to any

problem, even when the forces are not given at the start; above all, it reveals a
mathematical structure underlying the equations of motion that is muchmore general
than classicalmechanics itself, aswe shall see. TheTheory ofRelativity andQuantum
Mechanics are generalizations of classical mechanics rooted in analytical mechanics.

In many interesting problems, the motion is limited by constraints. For example, a
point particle may be constrained to move on a surface, or along a line. A constraint
like this that can be expressed as an equation of the form F(x1, · · · , xN ) = 0 is
called holonomic and reduces the number of unknowns and equations. For a point
mass, one should solve 3 equations of motion, but if the particle is known to move
on a circle of radius R, an angle is sufficient to locate the point. There is, however,
the additional difficulty is that the forces resulting from the constraints are known
only after solving the problem.

For N = 2 independent points, one has 6 equations of motion to solve. Now
suppose we have a system of two masses m1,m2 constrained to remain at a distance
r0 at the ends of a rigid stick of negligible mass, hinged at the origin of coordinates
of the center of gravity. Such a system is called a rigid rotor in 3 dimensions. The
center of gravity of the two masses is the point

−→
R = m1

−→r 1 + m2
−→r2

m1 + m2
. (2.5)

In this case,
−→
R = −→

0 and −→r 1 = −m1
m2

−→r 2. Denoting r1, r2 the fixed distances from
the origin, r1 = m1

m2
r2. Moreover, r1 + r2 = r0, and so r1 = m2r0

m1+m2
, r2 = m1r0

m1+m2
.

When the rotor moves, the stick acts on the masses with unknown forces. Are we
lost? No. The general method for writing the equations of motion is due to Giuseppe
Luigi Lagrange (Torino 1736 - Paris 1813), the great Italian-French mathematician,
and (independently) to the great Swiss Euler.3 Next, we shall see the Euler–Lagrange
theory, assuming smooth constraints (that is, they should not make work and should
not dissipate energy during the motion.

3Leonhard Euler (Basel, Switzerland 1707- S. Petersburg, Russia 1783) was probably the greatest
mathematician of all times. He contributed to all fields of analysis, number theory and geometry.
He also wrote the book Mechanica about his results on the equations of motion.
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The rotor has two degrees of freedom, and we can choose the angles θ and φ
of one mass in polar coordinates. We do not need 6 equations, but only 2. Before
proceeding, I introduce the general method terms.

2.2 Lagrangian Formalism

Constraints and Lagrangian Coordinates

N material points in 3 dimensions are described in Cartesian coordinates by

{x1, y1, z1, x2 . . . zN } ≡ {xiα}, 0 < i ≤ N , 1 ≤ α ≤ 3.

We consider constraints, such as those requiring the points to move on certain
surfaces, or to maintain some fixed distances. The force on the particle i can be
decomposed:

−→
F i = −→

F appl
i + −→

F vinc
i ,

where the first term (applied force) is known (we can think of springs, gravitational
forces, electric fields, assigned by the problem), but the constraint reaction is not.
Suppose that the applied forces are conservative, i.e., they arise from a potential
energy V {x1, y1, z1, x2 . . . zN } according to

Fappl
i,α = − ∂V

∂xi,α
. (2.6)

The − sign tells us that the force pulls towards a decreased potential energy. We
assume smooth constraints. Therefore, the reaction of the constraints is orthogonal
to the infinitesimal shift of particle i δ

−→
R i and does not work:

−→
F vinc

i · δ
−→
R i = 0. (2.7)

The force due to the constraint is perpendicular to the shift of particle i. The work
δL done by the applied forces is given by

− δV = δL =
∑

i

−→
F i · δ

−→
R i ≡

∑

i

−→
F appl

i · δ
−→
R i , (2.8)

where i runs over the point masses; so

− δV =
∑

i,α

Fappl
i,α δxi,α. (2.9)



2.2 Lagrangian Formalism 11

Note that we are assuming a potential that depends on positions and not on velocities.
This restriction will be removed when dealing with the Lorentz force. Since the
Cartesian shift {δx1, δy1, δz1, δx2 . . .} ≡ {δxiα} is not allowed by the constraints,
the Lagrangian coordinates qβ , 1 ≤ β ≤ s are more convenient to represent δ

−→
R i

provided that every δqβ represents a possible motion. One substantial advantage
is that the number s of degrees of freedom is reduced: s < 3N . The Cartesian
components of an infinitesimal motion allowed by the constraints is:

δxi,α =
∑

β

∂xi,α
∂qβ

δqβ . (2.10)

From (2.9), one gets:

− ∂V

∂qβ
=
∑

i,α

Fappl
i,α

∂xi,α
∂qβ

. (2.11)

The infinitesimal work done by the applied force Fappl is:

δV =
∑

β

∂V

∂qβ
δqβ . (2.12)

In analogy with (2.6),

Qβ = − ∂V

∂qβ
(2.13)

is called the generalized force; this can be written in terms of the applied force using
(2.11):

Qβ =
∑

i,α

Fappl
i,α

∂xi,α
∂qβ

. (2.14)

The Euler–Lagrange Equations

Starting with the equations of motion and the constraints (if any) written in Carte-
sian coordinates, we want to rewrite everything in terms of Lagrangian coordinates
qα,α = 1, · · · s, in order to have as many coordinates as the degrees of freedom, and
in order to take into account the constraints automatically. The scalar product of the
Cartesian equation

−→
F i = d−→p i

dt
(2.15)

with an infinitesimal displacement δ
−→
R compatible with the constraints, yields:

− δV =
∑

i

−→
F i · δ

−→
R i =

∑

i

d−→p i

dt
· δ

−→
R i =⇒ −δV =

∑

i,α

ṗi,αδxi,α. (2.16)
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The first term is (2.12); The first equality introduces the assumption that the
constraints do not make work. We change variables in the last term, using (2.10).

∑

i,α

ṗi,αδxiα =
∑

i,α

ṗi,α
∑

β

∂xiα
∂qβ

δqβ =
∑

i,α

mi ẍi,α
∑

β

∂xiα
∂qβ

δqβ;

exchanging the summations in order to highlight δqβ , one finds that:

−δV =
∑

β

δqβ

∑

i,α

mi ẍi,α
∂xiα
∂qβ

,

hence, we obtain the generalized force:

− ∂V

∂qβ
=
∑

i,α

mi ẍi,α
∂xiα
∂qβ

.

The potential term was easy to rewrite in Lagrangian coordinates; to transform
the kinetic term in the Eq.2.17, we note that

ẍi,α
∂xiα
∂qβ

= d

dt

(
ẋi,α

∂xiα
∂qβ

)
− ẋi,α

d

dt

∂xi,α
∂qβ

,

that is, exchanging derivatives in the last term,

ẍi,α
∂xiα
∂qβ

= d

dt

(
ẋi,α

∂xiα
∂qβ

)
− ẋi,α

∂ ẋi,α
∂qβ

. (2.17)

So,
∑

i,α

mi

[
d

dt

(
˙xiα ∂xia

∂qβ

)
− ẋiα

∂

∂qβ
ẋiα

]
= − ∂V

∂qβ
. (2.18)

The second term in the l.h.s. is

−
∑

i,α

mi ẋiα
∂

∂qβ
ẋiα = − ∂T

∂qβ
, (2.19)

where T is the kinetic energy. Now the equation of motion reads as:

d

dt

∑

i,α

mi

(
˙xiα ∂xia

∂qβ

)
= − ∂

∂qβ
(T − V ). (2.20)
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The Time Derivative

We wish to eliminate the Cartesian coordinates from the l.h.s., and this is highly
nontrivial. First of all, dividing both sides of (2.10) by dt ,

ẋiα =
∑

β

∂xiα
∂qβ

q̇β . (2.21)

At this point, the components of the velocity are to be thought of as functions of all
the q and the time, but we decide that they also depend on the q̇β , which we take as
independent variables. Differentiating ẋiα with respect to q̇β , one finds that:

∂ ẋiα
∂q̇β

= ∂xiα
∂qβ

. (2.22)

Now the l.h.s. of (2.20) becomes

d

dt

∑

i,α

mi

(
˙xiα ∂ ˙xia

∂q̇β

)
= d

dt

∂T

∂q̇β
. (2.23)

Substitution in in (2.20) yields:

d

dt

∂T

∂q̇β
= ∂T

∂qβ
− ∂V

∂qβ
. (2.24)

Then, we introduce the Lagrangian function, or simply the Lagrangian

L(q, q̇, t) = T (q, q̇, t) − V (q, t), (2.25)

where q stands for the set of all coordinates, q̇ for the set of velocities, and so on. The
Lagrangian equations of motion, valid in every reference and coordinate system, are
of the same form for all systems, namely,

d
dt

∂L
∂q̇β

= ∂L
∂qβ

. (2.26)

To appreciate the reasons why L = L(q, q̇, t), we must pause a moment to
understand the decisive step taken in Eq. (2.22). The fact that the velocity components
are to be treated as independent variables in that particular way is not a physically
evident fact, but it is the nontrivial point, the one that required the work of great
mathematicians. Indeed, q̇β is determined if we know qβ versus time t , so one could
have taken q̇ as a function of q and t . This would have led to a mathematically
different functional dependence and to an impasse. The Lagrangian formalism is
achieved only by considering the velocities as independent variables for T and L .
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The generalized momenta are defined by

pi = ∂L

∂q̇i
(2.27)

and are functions of the independent variables of L , namely,

pi = pi (q, q̇, t), (2.28)

(recall that here, q, q̇ stand for the set of all the coordinates and velocities). If, for
a particular q, ∂L

∂q = 0, then q is cyclic and Eq. (2.26) says that the corresponding
momentum (which is called the conjugate momentum) is conserved. If an angle is
cyclic, a component of the angular momentum is conserved; if x is cyclic, px is
conserved, and so on.

If L has no explicit dependence on time, the energy is conserved. Indeed, the total
derivative is

dL

dt
=
∑

α

∂L

∂qα
q̇α +

∑

α

∂L

∂q̇α
q̈α, (2.29)

and one finds that

dL

dt
=
∑

α

q̇α
d

dt

∂L

∂q̇β
+
∑

α

∂L

∂q̇α
q̈α = d

dt

∑

α

∂L

∂q̇α
q̇α,

which implies the conservation of the energy

∑

α

∂L

∂q̇α
q̇α − L =

∑

α

pαq̇α − L = E . (2.30)

We have a great freedom of choice of Lagrangian coordinates q, and the equa-
tions of motion are always correct. In other words, the theory is invariant under point
transformations to new coordinates Q = Q(q, t). These transformations include
the change of reference to an arbitrarily moving frame. If one knows a Lagrangian
L(q, q̇, t) and wants to switch to a new Lagrangian L(Q, Q̇, t), all that is needed
is to express the old variables in terms of the new, i.e., to make a change of vari-
ables. The reason for this statementwill be clearwhenwe introduce the action, below.

2.2.1 Rotating Platform

Let us write the equations of motion of a material point in a platform rotating in a
clockwise direction. Since the Earth is a rotating frame, this example is relevant to
everyday life. In the inertial frame, the Lagrangian reds
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L(x0, y0, ẋ0, ẏ0) = 1

2
m(ẋ20 + ẏ20 ), (2.31)

and the point transformation is of the form

x = x0 cos(ωt) − y0 sin(ωt), y = y0 cos(ωt) + x0 sin(ωt). (2.32)

We find that the square of the velocity is ẋ20 + ẏ20 = (ẋ +ωy)2 + (ẏ−ωx)2. Thus,
the Lagrangian in the rotating frame becomes:

L(x, y, ẋ, ẏ) = 1

2
m[ẋ2 + ẏ2 + ω2(x2 + y2) − 2ω(x ẏ − yẋ)]. (2.33)

The equations of motion are as follows:

mẍ = mω2x − 2mω ẏ, mÿ = mω2y + 2mωẋ . (2.34)

In the rotating system, we experience the obvious centrifugal force

−→
F = (Fx , Fy) = mω2(x, y) (2.35)

and the less obvious velocity-dependent Coriolis force

ω(−ẏ, ẋ). (2.36)

Problem 1 Write the Lagrangian and the equations of motion for the one-
dimensional oscillator of mass m and force constant k, that is, F = −kx .

Solution 1

L = 1

2
mẋ2 − 1

2
kx2.

Problem 2 A plane pendulum has mass m and length l; the acceleration of gravity
is parallel to the vertical axis z is g. Write the Lagrangian and the equation of motion.

Solution 2 The speed is lφ̇, and the kinetic energy is T = 1
2ml2φ̇2. Since V =

mz = g−mgl cos(φ), one finds L = 1
2ml2φ̇2+mgl cos(φ). Therefore, ∂L

∂φ̇
= ml2φ̇ ,

∂L
∂φ

= −mgl sin(φ) and the equation of motion is lφ̈ = −g sin(φ).

Problem 3 A plane pendulum of massm2 and length l is linked to a massm1, which
can move on a horizontal axis x . The acceleration of gravity is parallel to the vertical
axis z and its magnitude is g. Write the Lagrangian (Fig. 2.1).

Solution 3 Since x2 = x + l sin(φ), z2 = −l cos(φ), ẋ2 = ẋ + l cos(φ)φ̇,

ż2 = l sin(φ)φ̇, and substituting into T = 1
2 [m1 ẋ2 + m2(ẋ22 + ż22)] one finds

T = 1
2 (m1 + m2)ẋ2 + m2

2 (l2φ̇2 + 2l ẋφ̇ cos(φ)). So,
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Fig. 2.1 A pendulum
hanged to a mobile mass

L = 1

2
(m1 + m2)ẋ

2 + m2

2
(l2φ̇2 + 2l ẋφ̇ cos(φ)) + m2gl cos(φ).

Hence, the equations of motion follow immediately.

Problem 4 (Free-falling oscillator) In a free-falling lift, (the acceleration of gravity
is g), a harmonic oscillator (mass = m, elastic constant = k, force F = −kz) is
aligned to the vertical z axis of a local Cartesian system (x , y, z), which is fixed in
the lift. The oscillator starts from z = 0 at time t = 0. At t = 0, the local system
(x , y, z) coincides with a stationary one (XY Z ) fixed in the ground and the relative
velocity is 0. Write the Lagrangian, equation of motion and its general solution in
the (XY Z ) frame.

Solution 4 The Lagrangian in the system of the lift is L = 1
2mż2− 1

2kz
2. The origin

of the falling system is at La Z = − 1
2gt

2 and the oscillator is at Z(t) = z(t) − 1
2gt

2.
Changing the coordinates,

L = 1

2
mż2 − 1

2
kz2 = 1

2
m
(
Ż + gt

)2 − 1

2
k

(
Z + 1

2
gt2
)2

,

the equation of motion reads as:

m(Z̈ + g) = −k

(
Z + 1

2
gt2
)

.

The general solution is Z(t)A sin(ωt + ϕ) − 1
2gt

2.

Problem 5 Rigid rotor. Above, we have defined the rotor as a system of two masses
m1,m2 constrained to remain at a distance r0 at the ends of a rigid stick of negligible
mass. Find the equations of motion for the rotor.

Solution 5 The coordinate transformation is:

x1 = r1 sin θ cosφ,

y1 = r1 sin θ sin φ,

z1 = r1 cos θ,
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with x2 = − r2
r1
x1 = −m1

m2
x1, and so on. The Lagrangian coincides with the kinetic

energy, that is, in obvious notation,

T = 1

2
(m1

−→v 2
1 + m2

−→v 2
2).

From the velocity components

ẋ1 = r1(cos θ cosφθ̇ − sin θ sin φ φ̇),

ẏ1 = r1 (cos θ sin φθ̇ + sin θ cosφφ̇),

ż1 = −r1 sin θ θ̇,

one finds −→v 2
1 = ẋ21 + ẏ21 + ż21r

2
1 (θ̇

2 + sin2 θφ̇2), −→v 2
2r

2
2 (θ̇

2 + sin2 θφ̇2). Therefore,

T = 1

2
I (θ̇2 + sin2 θφ̇2),

where

I = m1r
2
1 + m2r

2
2 ,

is the moment of inertia of the rotor. Setting

pθ = ∂L
∂θ̇

= I θ̇,

pφ = ∂L
∂φ̇

= I sin2 θφ̇,

we may write the equation of motion

ṗθ = I sinθ cos θφ̇2,

ṗφ = 0.

Problem 6 A point mass m moves along the curve z(x) = H sin( x
L ) on the vertical

zx plane, where H is some length. There is no friction and the acceleration of gravity
is g.One can take x as the onlyLagrangian coordinate of this one-dimensionalmotion.
Write the Lagrangian L(x, ẋ) and the kinetic momentum px .

Solution 6 ż = cos( x
H )ẋ , therefore setting c(x) ≡ cos

(
x
H

)
,

T = 1

2
mẋ2

[
1 + (x)c2

]
, L = T − mgH sin

( x

H

)
.

Hence, px = ∂L
∂ ẋ = mẋ

[
1 + c2

]
.
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2.2.2 Kepler Problem

The two-body problem, inwhich the two bodies interact through a central force F that
varies as the inverse square of the distance r between them is known as the Kepler
problem. In Sect. 2.5.1, we shall see that a two-body problem of this kind can be
reduced to the problem of a single effective mass in an external potential. Here, we
review the latter problem, first solved by I. Newton.

In cylindric coordinates, the square length element is dl2 = dr2 + r2dφ2 + dz2,
and therefore the kinetic energy of a point mass m is K = 1

2m(ṙ2 + r2φ̇2 + ż2).
Letting the orbit of a planet of mass m lay on the z plane, the Lagrangian is, in
obvious notation,

L = 1

2
m
[
ṙ2 + r2φ̇2

]+ G
Mm

r
. (2.37)

One readily obtains from the Lagrange formalism the conservation of the angular
momentum directed along z J = ∂L

∂φ̇
= mr2φ̇ and of the energy E = 1

2m(ṙ2 +
r2φ̇2) − GMm

r . These conditions determine the orbits, but we need to do some work
to extract them. We divide both sides by

φ̇2 =
(

J

mr2

)2

(2.38)

and make the substitution
dr
dt
dφ
dt

→ dr

dφ
;

we arrive at

mr4E

J 2
= m2r4

2J 2

(
dr

dφ

dφ

dt

)2

+ m2r6

2J 2

(
dφ

dt

)2

− Gm2Mr3

J 2
. (2.39)

Next, let ξ = 1
r , which implies dr

dφ
= − 1

ξ2
dξ
dφ

, and use Eq. (2.38); this gives us

mE

J 2
= 1

2

(
dξ

dφ

)2

+ ξ2

2
− GMm2ξ

J 2
. (2.40)

Next, we apply ∂
∂φ

and simplify, obtaining

d2ξ

dφ2
+ ξ − GMm2

J 2
= 0. (2.41)
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This leads us to

ξ = GMm2

J 2
[1 + e cos(φ − φ0)]. (2.42)

Then, the orbit is given by

r = a(1 − e2)

1 + e cos(φ − φ0)
, (2.43)

with e =
√
1 + 2E J 2

G2M2m3 , a(1 − e2) = J 2

GMm2 . If the constant of integration e is less
than 1, the orbit is an ellypse with eccentricity e and major axis 2a. If e > 1 it is an
hyperbola, and for e = 1 it is a parabola.

2.3 The Path Between t1 and t2 and the Action Integral

The Lagrangian contains the necessary information for writing the equation of
motion, but it is not a measurable quantity, and every change of coordinates changes
it as a function of time. Is there any quantity that can be used to characterize a given
motion and is invariant for punctual transformations? To answer this question, we
reformulate the problem of Mechanics as follows. Suppose we know the forces that
act in a mechanical system, and we observe that in the time interval (t1, t2), the coor-
dinate q goes4 from q(t1) to q(t2). In a sense we have two snapshots. Can we use
this information to retrace what happened in between? The answer must be sought
with the help of the Lagrangian. A priori, i.e. before solving the problem of motion,
one knows only that the physical law q(t) belongs to a large set E of functions q(t)
which have nothing in common except that they all satisfy the same boundary condi-
tions; these trajectories laws are called virtual paths. Solving the equations of motion
means choosing between the virtual paths q(t) ∈ E the few possible ones. For every
virtual path q(t), it turns out that L(q(t), q̇(t), t) is a function of time. Integrating
this function of time we can calculate the action S:

S =
∫ t2

t1

dt L(q(t), q̇(t), t). (2.44)

Dimensionally, S is energy × time and is a functional of the virtual path, i.e. a
function of all the values of q(t) at each t in the path under consideration. In this
way, S depends on an infinite number of variables. For instance, for a point mass
moving at constant speed v = xb−xa

t2−t1
from xa to xb,

4As usual, we speak about one variable q for short, but the argument is intended for a set of s
variables.
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S = m

2

∫ t2

t1

dt = (xb − xa)2

(t2 − t1)2
= m

2

(xb − xa)2

t2 − t1
.

There is an infinity of alternative virtual paths x(t), x(t1) = xa, x(t2) = xb, and
one can calculate S for each of them.

The reason why S is interesting is that it does not depend on the choice of
Lagrangian coordinates used to describe the virtual path, but only on the path itself.
In fact, the value that S takes at time t does not change if we make a point transfor-
mation, which is simply a change of variables in an integral. The fact that for a given
path, S is not arbitrary suggests that it must have a physical meaning, and indeed,
we shall see that it offers the opportunity to make considerable further progress.

Problem 7 For an harmonic oscillator ofmassm and constant k, L = m
2 (ẋ2−ω2x2),

where ω2 = k
m . Calculate S for a physical path from x = 0, t = 0 to x = X, t = T .

Solution 7 Set x = A sin(ωt), X = A sin(ωT ), L = m
2 A

2ω2 cos(2ωt); one finds:

S = m

2
A2ω sin(ωT ) cos(ωT ) = m

2
X2ωcotg(ωT ).

2.3.1 Principle of Least Action

There is an infinity of virtual paths between the snapshots q(t1) and q(t2), and one
should distinguish those that are physically possible (if any) from the infinity of
absurd ones. The action integral assigns a number (with the dimensions of energy
× time, or angular momentum) to each virtual path, and so we can compare the
action integrals of different paths with the initial and final configurations q(t1) and
q(t2). Two virtual paths that differ little in position and velocity also give close
results when one computes S. In the infinite-dimensional space of paths, one has the
means to compare two of them and also define the concept of the extreme, such as
a maximum or a local minimum. For instance, a path is a minimum if any “small”
change produces a increase of S. In order to define rigorously an arbitrary variation,
we define an arbitrary function ηi (t) such that ηi (t1) = ηi (t2) = 0 and vary the path
by qi (t) → qi (t) + ηi (t). The varied Lagrangian is

L(qi (t), q̇i (t), t) → L(qi (t) + ηi (t), q̇i (t) + η̇i (t), t).

We are interested in small arbitrary variations, therefore we instead put

qi (t) → qi (t) + αiηi (t),

where αi is a parameter that allows us to adjust the magnitude of the change. We can
always (provided that ηi (t) is not too bad) choose αi small enough to obtain a small
change of S. For a generic q(t), with αi � 1 we find, when we vary paths,
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S(αi ) − S(0) = δS(1)αi + δS(2)α2
i + . . . ;

and the variational principle is:

δS(1) = ∂S

∂αi
dαi = 0. (2.45)

This condition makes the action stationary; the first-order correction vanishes.
Since

S(αi ) =
∫ t2

t1

dt L(qi (t) + αiηi (t), q̇i (t) + αi η̇i (t), t)dt,

the condition is

∂S

∂αi
|αi→0 = 0 =

∫ t2

t1

dt

[
∂L

∂qi
ηi (t) + ∂L

∂q̇i
η̇i (t)

]
. (2.46)

We must transform η̇, since we do not know its behaviour at t1 and t2, so we integrate
by parts:

∂S

∂αi
= 0 =

[
∂L

∂q̇i
ηi (t)

]t2

t1

+
∫ t2

t1

dt

[
∂L

∂qi
ηi (t) − ηi (t)

d

dt

∂L

∂q̇i

]
. (2.47)

Since ηi (t) vanishes at t1 and t2,

∫ t2

t1

dtηi (t)

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
= 0. (2.48)

This is possible with arbitrary ηi only if the Euler–Lagrange equations hold. There-
fore, the principle of least action is a particularly concise way to reformulate the laws
of mechanics.

The fascination for variational principles has always been strong. Pierre Louis de
Maupertuis, whowrote about this principle in 1744, felt that “Nature is thrifty in all its
actions.” Earlier, Pierre de Fermat (1601–1665) found a famous variational principle
in optics,which is presented in Sect. 4.4. InTheoretical Physics, variational principles
are everywhere. They are important in Electromagnetism, General Relativity and
Quantum Mechanics. Besides a great aesthetic appeal, they are also important in
practice, as we shall see.

It is not granted that the least action principle leads to a unique extremal path. It
is not always possible to retrace what happened in between two snapshots giving the
configuration of a system at different times, i.e., q(t1) and q(t2). If the two snapshots
show a pendulum in the vertical position, it could have always remained still, or it
could have been in oscillation provided that t2 − t1 is a multiple of the period of
oscillation. In general, this sort of information selects a class of possibilities, but the

http://dx.doi.org/10.1007/978-3-319-71330-4_4
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motions that are not compatible with the Euler–Lagrange equations are impossible.5

One learns from this example that the physical motions correspond to stationary
paths but not necessarily to the minimum.

Supposewe add the total time derivative of an arbitrary function to theLagrangian:

L(q, q̇, t) → L(q, q̇, t) + d

dt
F(q, t). (2.49)

This addition changes S by F(q(t2), t2) − F(q(t1), t1). The equations of motion
are obtained by varying the paths, however, the initial and final ’snapshots’ are not
changed. So, one is free to add the total time derivative of an arbitrary function to
the Lagrangian, since this does not alter δS. The lagrangian is largely arbitrary, and
one can exploit this fact.

While q̇ are independent variables for L , their variation is a consequence of the
variation of q. If qi (t,αi ) = qi (t) + αiηi (t), then q̇i (t,αi ) = q̇i (t) + αi η̇i (t). So,
there is some redundancy in the process.

The variational principle contains another remarkable result, if instead of the
virtual paths from q1(t1) to q2(t2, ) we consider the physical paths, without fixing
q2(t2). Then, δS does not vanish any more, but instead of Eq.2.47 one finds:

∂S

∂αi
=
[

∂L

∂q̇i
ηi (t)

]t2

t1

+
∫ t2

t1

dt

[
∂L

∂qi
ηi (t) − ηi (t)

d

dt

∂L

∂q̇i

]
, (2.50)

where the integral now vanishes; since ηi (t2) = ∂qi
∂α1

|0, we may write δS =
∑

i
∂L
∂q̇i

δqi (t2), that is,

∂S

∂qi
= pi . (2.51)

This result will be useful below.

2.4 Legendre Transformation

Let f (x, y) be a good function defined in the plane. Then, its differential is

d f = udx + vdy, (2.52)

where

u = ∂ f

∂x
, v = ∂ f

∂y
. (2.53)

5We shall see that in Quantum Mechanics, this is no longer true.
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It occurred to Legendre6 that if one introduces a new function

γ(x, y) = f (x, y) − u(x, y)x, (2.54)

then

dγ(x, y) = d f (x, y) − u(x, y)dx − xdu(x, y) = v(x, y)dy − xdu(x, y).
(2.55)

The differential dx has disappeared, by the rules of differential calculus. But Legen-
dre was able to see more than that. Indeed, vdy− xdu is the differential of a function
g(u, y), provided that instead of treating u as a function of x, y, we consider x as a
function of u, y. Explicitly, the differential is

dg(u, y) = v(x(u, y), y)dy − x(u, y)du(x(u, y), y).

This inverse function x(u, y) can be found uniquely if there is a one-to-one corre-
spondence between x and u; this is granted if u = ∂ f (x,y)

∂x increases (or decreases)
with increasing x , or, equivalently, if f is convex. The x-independent g(u, y) is well
defined; when u = u(x, y), it takes all the values of γ(x, y), but the functional
dependence of the two functions g and γ on the respective independent variables is
different.

In Eq. (2.54,) one gets γ in terms of f , but to find f from γ, one should solve a
partial differential equation because of the presence of u = ∂ f

∂x . After the change of
independent variable, we have

g(u, y) = φ(u, y) − ux(u, y) (2.56)

where
φ(u(x, y), y) = f (x, y). (2.57)

We see that
∂g

∂u
= −x,

∂g

∂y
= v. (2.58)

The similarity with Eq. (2.53) confirms the duality of f and g. Now the knowledge
of g(u, y) is fully equivalent to the knowledge of f (x, y), and it is a matter of
convenience as to which function to use.

The reason why this change of independent variables is useful is as follows.
Sometimes u is a physical quantity that one can measure more easily than x , and
in this sense, the transformation is analogous to the Fourier transformation (one can

6Adrien Marie Legendre (Paris 1752- Paris 1833) academic of Sciences and one of the great math-
ematicians of his age.
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decide to write all quantities in terms of time if the equipment is based on clocks or in
termsof frequency, if the equipment is basedon antennas.) The inverse transformation
f = g + xu is just (2.56). As in the case of Fourier, if you apply the transform twice,
you are back at the original form.

Legendre’s method is simple and general and can be applied directly to func-
tions of many variables f (x, y, z, w, . . .) since the transformation can be applied
independently to each variable.

2.5 The Hamiltonian

Building on the Lagrangian formulation, William Rowan Hamilton7 found a new,
more effective framework. The Hamiltonian formulation allows us to solve difficult
problems and deepens the general understanding of the workings of the theory. The
main idea is a change of the independent variables. No longer q, q̇ , but qi and
pi = ∂L

∂q̇i
. At first sight, this does not appear to be a real novelty, since for a point

mass in Cartesian coordinates velocity andmomentum are proportional,−→p = m d−→x
dt .

However, when using other Lagrangian coordinates, there is no such trivial relation
between momentum and velocity, and further complications arise when introducing
a vector potential (see Sect. 2.5.4). The change from the independent variables q̇i to
pi is a Legendre transformation

H(p, q, t) =
∑

i

pi q̇i − L(q, q̇, t), (2.59)

where H(p, q, t) is the Hamiltonian, which does not depend on the velocities:

∂H

∂q̇k
= pk − ∂L

∂q̇k
= 0. (2.60)

If L does not depend on time explicitly, we know from (2.30) that H = E is the
energy and is conserved along the physical evolution of the system; then, we can
say that the Hamiltonian is the energy as a function of q and p. The equations of
motion were obtained by Hamilton from the variational principle δS = 0, with S
now a functional of the path written as p(t), q(t).

S =
∫ t2

t1

dt L(q, q̇, t) =
∫ t2

t1

dt

[
∑

i

pi q̇i − H(p, q, t)

]
. (2.61)

7This early Irish genius (Dublin 1805 - Dublin 1865), at the age of 22, went to Trinity College to
explain his reformulation of Mechanics, and immediately got a chair. He continued for the rest of
his life to produce high-level results; he also worked on the quaternions, which are essentially the
spin matrices that we will discuss later on.

http://dx.doi.org/10.1007/978-3-319-71330-4_2
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Here, q̇(t) is thought of as a function of q(t) and p(t) along the virtual path. Note
that q(t) e p(t) can now be varied independently, while in the Lagrangian formalism,
q̇ is fixed by q(t)). We consider variations

qi (t,αi ) = qi (t, 0) + αiηi (t),

pi (t,αi ) = pi (t, 0) + αiξi (t).

where ηi (t), ξi (t) are arbitrary independent functions. As in the Lagrangian formal-
ism, qi is fixed at t1 and t2,

ηi (t1) = ηi (t2) = 0. (2.62)

Note, however, that no such constraint limits ξi . In Lagrangian formalism, there was
no prescription on q̇(t1) and q̇(t2); in the same way, p(t1) and p(t2) are left arbitrary.
So, (2.61) becomes:

S =
∫ t2

t1

dt

[
∑

i

[pi + αiξi ] [q̇i + αi η̇i ] − H(pi + αiξi , qi + αiηi , t)

]
.

Neglecting terms in α2
i ,

dS

dαi
=
∫ t2

t1
dt

(
pi η̇i + q̇i ξi − ∂H

∂qi
ηi − ∂H

∂ pi
ξi

)
=
∫ t2

t1
dt

(
pi η̇i − ∂H

∂qi
ηi + ξi

[
q̇i − ∂H

∂ pi

])
.

An integration by parts eliminates η̇:
∫ t2

t1

dtpi η̇i piηi |t2t1 −
∫ t2

t1

dt ṗiηi = −
∫ t2

t1

dt ṗiηi ,

and we are left with

∫ t2

t1

dt

[
ηi

(
− ṗi − ∂H

∂qi

)
+ ξi

(
q̇i − ∂H

∂ pi

)]
= 0.

Hence, one obtains the Hamiltonian equations (or canonical equations)

ṗi = −∂H

∂qi
, (2.63)

q̇i = ∂H

∂ pi
. (2.64)

The p, q that appear in (2.63), (2.64) are canonically conjugate variables. The canon-
ical equations also follow from Lagrange’s equations, but to see that, starting from
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the definition (2.59) of the Hamiltonian, one must be careful about the independent
variables.

For L they are q, q̇ , but for H(p, q, t) = ∑
i pi q̇i − L(q, q̇, t), q̇ must be

rewritten in terms of p and q. Thus,

∂H

∂qk
=
∑

i

pi
∂q̇i
∂qk

− ∂L

∂qk
−
∑

i

∂L

∂q̇i

∂q̇i
∂qk

. (2.65)

The first term yields 0 with the third and one gets, using Lagrange’s equations,

∂H

∂qk
− ∂L

∂qk
= − d

dt

∂L

∂q̇k
= − ṗk . (2.66)

This verifies (2.63). On the other hand, differentiating (2.59),

∂H

∂ pk
= q̇k +

∑

i

pi
∂q̇i
∂ pk

−
∑

i

∂L

∂q̇i

∂q̇i
∂ pk

;

simplifying the last two terms one is left with (2.64). Along a physical trajectory,
H = H(p(t), q(t), t) depends on the time in such a way that

dH

dt
= ∂H

∂t
. (2.67)

Indeed,

dH

dt
= ∂H

∂t
+
∑

i

(
∂H

∂qi
q̇i + ∂H

∂ pi
ṗi

)
,

but the sum vanishes by the canonical equations. So, when H is not explicitly a
function of time, then H = E is a constant.

2.5.1 Reduced Mass

For N = 2 point masses m1,m2 interacting via an instantaneous potential energy
V (r12) depending on their distance, one can start from the observation thatm1

−̈→r 1 =
−∇1V (r12) andm2

−̈→r 2 = −∇2V (r12) are opposite; in other words, the instantaneous
forces felt by the two masses are opposite. Consequently, their center of mass

−→
R = m1

−→r 1 + m2
−→r 2

m1 + m2
(2.68)
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obeys
−̈→
R = 0, that is, makes a free-particle motion. Thus, the Hamiltonian

p21
2m1

+ p22
2m2

+ V (r12) (2.69)

can be simplified, by separating the center-of-mass degrees of freedom from the
more interesting relative motion. Setting ρ = r12 and pr = p1 − p2, one can change
variables with

−→p 1 = −→p −→ρ + m1

m1 + m2

−→p −→
R
,

−→p 2 = −−→p −→ρ + m2

m1 + m2

−→p −→
R
.

Computing the squares one realizes that

p21
m1

+ p22
m2

= p2R
m1 + m2

+
[

1

m1
+ 1

m2

]
p2−→ρ . (2.70)

One can solve the problem in terms of a single effective particle having the reduced
mass μ such that

1

μ
= 1

m1
+ 1

m2
. (2.71)

Since −→p −→
R
is conserved, we can separate the center-of-mass motion and reduce the

two-body problem to an effective one-body problem with Hamiltonian

H = p2ρ
2μ

+ V (ρ).

Wealready used this separation in Sect. 2.2.2. Once the relativemotion is determined,
one can use ρ(t) and R(t) to find r1(t) and r2(t). This argument is easily extended
to reduce any N body problem to N − 1: for N = 3 one can separate the motion of
the center of mass

−→
R = m1

−→r 1 + m2
−→r 2 + m3

−→r 3

m1 + m2 + m3
(2.72)

and reduce the problem to 2 effective particles.

2.5.2 Canonical Transformations

Lagrangian formalism allows us to use any choice of the s coordinates q that specify
the configuration of the system, and this freedom helps in the set-up and solution
of equations. The change from one set of coordinates q to a new set Q is a point
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transformation. The change in the velocities does not add anything. The Hamil-
tonian formalism replaces the s second-order Lagrange equations with 2s first-order
Eqs. 2.63, 2.64 and enlarges the class of transformations from the point transforma-
tions to the canonical transformations.Such transformations take fromcoordinatesqi
and canonically conjugate momenta pi , i = 1 . . . s, to new coordinates andmomenta
Qi and Pi . In short wemay say that the transformation is q, p → Q, P.Both choices
correspond to different pictures or representations of the same physical reality. The
new independent variables Q, P are assumed to be in one-to-one correspondence
with q, p via some invertible functional dependence such that P = P(p, q, t)
and Q = Q(p, q, t), and must be canonically conjugate to a new Hamiltonian
H̃(P, Q, t). Each virtual path p(t), q(t) is also represented by P(t), Q(t), and the
physical paths correspond to solutions of the Hamilton equations of motions in both
pictures. It is clear that the point transformations are a special case, but Hamilton’s
formalism is much more rewarding both in the solution of mechanical problems and
in the clarification of the inner mathematical structure of the theory.

It is desirable to develop a general technique that, starting from H(p, q, t), gener-
ates canonical transformations to P(p, q, t), Q(p, q, t), and the corresponding new
Hamiltonians H̃(P, Q, t). If we assume that the Lagrangian is unaffected by the
transformation, that is,

∑

i

pi q̇i − H(p, q, t) ≡
∑

i

Pi Q̇i − H̃(P, Q, t),

we are granted that the action is the same for each virtual path and the condition
δS = 0 gives the same paths in the two representations. This is correct, but too
restrictive, since the Lagrangian is largely arbitrary, andwe can allow it to be different
in the two pictures. What we really want is that a path which satisfies δS = 0 in
the (p, q) representation is mapped to a minimal path in the (P, Q) representation.
In other words, we just need that for all the variations with fixed end points of any
virtual path,

δS = δ

∫ t2

t1

dt

[
∑

i

pi q̇i − H

]
= δ

∫ t2

t1

dt

[
∑

i

Pi Q̇i − H̃

]
. (2.73)

The condition (2.73) is fulfilled if the integrands differ by the total derivative dF
dt

of a function F = F(p, q, P, Q, t). The total derivative inserted into the integral
gives some constant, and then δ yields 0. F is called the generating function of the
canonical transformation. Evidently, F = F(p, q, P, Q, t) is an action.

Indeed,

δ

∫ t2

t1

dt
dF

dt
= δ[F(t2) − F(t1)] = 0.
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Therefore, a condition that ensures a canonical transformation is:

∑

i

pi q̇i − H =
∑

i

Pi Q̇i − H̃ + dF

dt
. (2.74)

Here, p, q are functions of t along a path, while Q(t), P(t) are a different represen-
tation of the same path. A clever choice of F can allow for drastic simplifications of
hard problems. However we cannot be too euphoric: there is no method for finding
F , and it is difficult to invent a function of many variables. So in a sense the method
is too general to be practical. Normally one assumes that F = F(p, q, P, Q, t) does
not really depend on all its variables. F = F(q, Q, t) leads to

∑

i

pi q̇i − H =
∑

i

Pi Q̇i − H̃ + ∂F

∂t
+
∑

i

[∂F
∂qi

q̇i + ∂F

∂Qi
Q̇i ]. (2.75)

The coefficients of q̇i on both sides must be equal,

pi = ∂F(q, Q, t)

∂qi
. (2.76)

The same argument applies to Q̇i :

Pi = −∂F(q, Q, t)

∂Qi
. (2.77)

The transformation is canonical provided that:

H̃ = H + ∂F(q, Q, t)

∂t
. (2.78)

Thus, unlike the Lagrangian, H̃ is not obtained from H with a simple change of
variables; H̃ = H only if F is time-independent. Any F(q, Q, t) that one can
invent will lead to some H̃ (although a smart choice is needed to find a useful
transformation); however, we are not finished, since H̃ deserves to be considered
the new Hamiltonian only after eliminating p, q in favor of P, Q. Thus, we must be
able to do the transformation (p, q) → (P, Q). We must be able to solve Eqs. 2.76
and 2.77 for P e Q in terms di p, q. Once we know P(p, q, t) and Q(p, q, t)
and the inverse functions p(P, Q, t) and q(P, Q, t), then H̃ is achieved and we
have a transformed problem to solve. If we can solve H̃ , then the transformation
(P, Q) → (p, q) solves the original problem.

Example 1 The generating function

F =
∑

i

λi qi Qi
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yields

pi = λi Qi , Pi = −λi qi .

There is no reason to talk about momenta and coordinates any longer. One would
do better to speak about canonically conjugate variables. (Dimensionally pq is an
action, and this remains true, while the dimensions of the coordinates and momenta
may change.) For example, a harmonic oscillator is sent by the transformation into
a harmonic oscillator.

Problem 8 Let

H(p, q, t) = αpt + μ

(
q − 1

2
αt2
)2

, (2.79)

with constant α,μ. Solve the mechanical problem with the canonical transformation
specified by the generating function

F(q, Q, t) = Q

(
q − 1

2
αt2
)

. (2.80)

Solution 8 One finds

p = Q, P = −
(
q − 1

2
αt2
)

,
∂F

∂t
= −αt Q,

and so
H̃(P, Q, t) = μP2.

Every motion described by (2.79) is the image of a free motion.

Example 2 An important kind of transformations is generated by

F = S(q, P, t) −
∑

i

Pi Qi .

Now it is S which is commonly called the generating function. Then, (2.74) becomes

∑

i

pi q̇i −H =
∑

i

Pi Q̇i − H̃ + ∂S

∂t

+
∑

i

[
∂S

∂qi
q̇i + ∂S

∂Pi
Ṗi − Pi Q̇i − Qi Ṗi

]
.

(2.81)

Equating the coefficients of q̇i one finds:

pi = ∂S

∂qi
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this is just Eq. (2.51); S is the action as a function of the old coordinates and the new
momenta at the upper integration limit. Equating the coefficients of one gets: Ṗi

Qi = ∂S

∂Pi
,

H̃ = H + ∂S

∂t
.

Example 3 S = ∑
k qk Pk, F = S(q, P, t) − ∑

i Pi Qi generates the identity
transformation P = p, Q = q.

Problem 9 Given

H(p, q) = vp +
(
A

p

)2

+ B2 p4(q − vt)2,

where A, B, v are constants, transform the problem according to the generating
function

F(q, Q, t) = q − vt

Q
.

Solution 9 Since p = ∂F
∂q = 1

Q , P = − ∂F
∂Q = q−vt

Q2 , ∂F
∂t = − v

Q , one finds

H̃(P, Q) = H + ∂F

∂t
= A2Q2 + B2P2,

which describes a harmonic oscillator with pulsation ω = A and mass m = 1
2B2 .

2.5.3 Hamilton–Jacobi Equation

Wehave seen in the last Section that a generating function F = S(q, P, t)−∑i Pi Qi

with pi = ∂S
∂qi

leads to a transformed Hamiltonian H̃ = H + ∂S

∂t
, and this is clever

if we are able to solve the problem with H̃ . Indeed, S can be chosen such that

H̃(P, Q, t) = H(p, q, t) + ∂S

∂t
= 0. (2.82)

Then, ∂P
∂t = − ∂

∂Q H̃(P, Q, t) = 0 implies that P are constant and ∂Q
∂t =

− ∂
∂P H̃(P, Q, t) = 0 implies that Q are constant, too. Putting pi = ∂S

∂qi
into (2.82)

one arrives at the celebrated Hamilton–Jacobi equation

H

(
∂S

∂q
, q, t

)
+ ∂S

∂t
= 0. (2.83)
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Actually, the unknown S is an old acquaintance. From the differential dS =∑
i

∂S
∂qi

dqi + ∂S
∂t dt and from pi = ∂S

∂qi
, one obtains

dS

dt
=
∑

i

pi
dqi
dt

+ ∂S

∂t
.

Substituting the Hamilton–Jacobi equation one concludes that

dS

dt
=
∑

i

pi
dqi
dt

− H = L ,

that is, S is the action. If H does not depend on time, (2.82) ensures that ∂S
∂t = −E

is a constant, and then

H(
∂S

∂q
, q, t) = E . (2.84)

The mechanical problem is reformulated in terms of a partial differential equation,
like the propagation of a nonlinear wave. This is an important independent method
of solution and something of a premonition of Quantum Mechanics.

2.5.4 Point Charge in an Electromagnetic Field

A point charge q of mass m in an electromagnetic field
−→
E ,

−→
B feels the Lorentz

force. In the MKSA system, this reads as:

−→
F = q

[−→
E + −→v ∧ −→

B
]
. (2.85)

In the Gauss cgs system,8 one writes:

−→
F = q

[−→
E +

−→v
c

∧ −→
B

]
.

In this section, we do the calculations in the International System. Instead of
working with 2 fields (6 components), it is better to express everything in terms of
potentials

−→
A and φ (4 components overall); the magnetic induction field is:

−→
B = −→∇ ∧ −→

A = (∂2A3 − ∂3A2, ∂3A1 − ∂1A3, ∂1A2 − ∂2A1),

8This is popular in scientific literature, see e.g. John D. Jackson, “Classical Electrodynamics”, John
Wiley and Sons (1962).
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and the electric field comes from:

−→
E = −−→∇ φ − ∂

−→
A

∂t
; (2.86)

so, the equation of motion becomes

m−̈→r = −q
−→∇ φ − q

∂
−→
A

∂t
+ q−̇→r ∧ −→

B . (2.87)

We deduced the Euler–Lagrange equations under the hypothesis that force was the
gradient of a potential. TheLorentz force depends on the velocity, but don’tworry:we
will immediately see that a Lagrangian also exists in this case; Eq. (2.87) is obtained
from the Lagrangian9

L(
−→r ,−→v , t) = 1

2
mv2 − qφ + q−→v · −→

A (
−→r , t). (2.88)

Using Cartesian coordinates, one finds

∂L

∂xi
= −q

∂φ

∂xi
+ q

∑

j

ẋ j
∂A j

∂xi
, (2.89)

while

pi = ∂L

∂ ẋi
= mẋi + q Ai . (2.90)

Since
−→
A (

−→r , t) must be understood as
−→
A (

−→r (t), t), where −→r (t) travels along the
trajectory,

−̇→
A =

(
∂

∂t
+ ẋ1

∂

∂x1
+ ẋ2

∂

∂x2
+ ẋ3

∂

∂x3

)−→
A .

Therefore the Lagrange equations of motion are:

mẍi = q

⎡

⎣− ∂φ

∂xi
− ∂Ai

∂t
+
∑

j

ẋ j

(
∂A j

∂xi
− ∂Ai

∂x j

)⎤

⎦ . (2.91)

9Any other lagrangian that differs by a total derivative dF(
−→r ,t)
dt is equivalent.



34 2 Analytical Mechanics

One can readily check that, expanding (2.87) in components, the result is the same.
Since the force depends on the velocity, now the Lagrangian is L = T − U , with
T = 1

2mv2 and U = U (q, q̇, t). There is a velocity-dependent generalized force

Qi = −∂U

∂qi
+ d

dt

∂U

∂q̇i
, (2.92)

which is just theLorentz one, and xi is canonically conjugate to the canonicalmomen-
tum

pi = ∂L

∂ ẋi
= mẋi + q Ai ,

which, however, is not observable (like Ai ). It is the mechanical momentum pmec ≡
mẋi that is, of course, observable. The energy,

E =∑i pi q̇i − L

=∑i

[
(mẋi + q Ai )ẋi − ( 12mẋ2i + qẋi · Ai

)]+ qφ = 1
2mṙ2 + qφ

(2.93)

does not depend on the vector potential; however, since it containsφ, one canmeasure
neither, but one can measure the difference of φ between two space-time points and
energy differences. However the Hamiltonian H must be a function of the canonical
momentum −→p . Therefore, the Hamiltonian is

H = 1

2m
(
−→p − q

−→
A )2 + qφ. (2.94)

Thus, H contains p and A, which are not measurable, while the energy is defined
up to an arbitrary constant. To sum up, the rule to include the electromagnetic field
in a problem, is:

E → E + qφ , −→p → −→p − q
−→
A .

This rule (minimal coupling) remains true in relativistic, quantum and quantum rel-
ativistic theories.

Remark 1 In the Gauss system, the rule becomes:

E → E + qφ,
−→p → −→p − q

c

−→
A .

2.5.5 Poisson Brackets

Let F = F(p(t), q(t), t) be a measurable physical quantity, a function of the canon-
ical variables; the values it takes at time t while q(t) and p(t) vary along a trajectory
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must, of course, be invariant under all canonical transformations. The total time
derivative of F is:

Ḟ = ∂F

∂t
+
∑

i

(
∂F

∂qi
q̇i + ∂F

∂ pi
ṗi

)
.

Along the trajectory, q̇ = ∂H
∂ p , ṗ = − ∂H

∂q , and one finds that:

Ḟ = ∂F

∂t
+
∑

i

(
∂F

∂qi

∂H

∂ pi
− ∂F

∂ pi

∂H

∂qi

)
= ∂F

∂t
+ {F, H}p,q . (2.95)

In the last term, I have introduced the Poisson bracket; for any two functions A(p, q)

and B(p, q) of the canonical variables, they are defined by:

{A, B}p,q ≡
∑

k

(
∂A

∂qk

∂B

∂ pk
− ∂A

∂ pk

∂B

∂qk

)
= −{B, A}p,q . (2.96)

The symbol {A, B}p,q emphasizes that the derivatives are taken with respect to the
set (p, q). If F does not depend on time explicitly and {F, H}p,q = 0, then F is a
constant of the motion. Anyhow, since Ḟ − ∂F

∂t is a measurable, physical quantity,
it must be invariant, i.e., {F, H}p,q = {F, H}P,Q . The Poisson brackets with the
Hamiltonian are invariant.

If H(p, q), which governs the time evolution, is replaced by any arbitrary function
of the same variables, the invariance of the Poisson bracket under canonical transfor-
mation remains. The transformation {A, B}p,q → {A, B}P,Q involves writing (p, q)

in terms of (P, Q) and then differentiating with respect to the new variables. In this
respect, H is not special. One could always consider B as a fictitious Hamiltonian
and justify the invariance as above. Therefore, we may change notation and simply
write {A, B} .

The following rules are readily seen:

{A, costant} = 0; (2.97)

{A, B + C} = {A, B} + {A,C} ; (2.98)

{A, BC} = {A, B}C + {A,C} B. (2.99)

Moreover, since p and q are independent variables, and

∂ pi
∂ pk

= δi,k,
∂qi
∂qk

= δi,k,
∂ pi
∂qk

= 0,
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one finds the fundamental brackets

{
qi , p j

} = δi, j ,
{
qi , q j

} = 0,
{
pi , p j

} = 0. (2.100)

Now consider a canonical transformation to new variables (p, q) → (P, Q) The
Hamiltonian H(p, q) is transformed to a new Hamiltonian H̃ . Then, P, Q have the
fundamental brackets

{
Qi , Pj

}
P,Q = δi, j , where {}P,Q implies differentiation with

respect to the new variables. The fact that Poisson’s brackets are invariant under
canonical transformations implies that

{
Qi , Pj

}
p,q = δi, j , and this is of primary

practical importance; one can check the fundamental brackets using the old variables,
and certify the canonical transformation without knowing the generating function,
which remains unknown in most cases. If the problem is time-independent, one
obtains H̃ as well by a direct change of variables.

The Poisson brackets also help to find new constants of themotion using a theorem
credited to Poisson. One can show10 that if f and g are integrals of the motion (i.e.
constant quantities), then { f, g} is also an integral of the motion. It could turn out
to be a constant or some combination of f and g but sometimes it is a useful new
conserved quantity. The proof is based on the Jacobi identity

{ f, {g, h}} + {g, {h, f }} + {h, {g, f }} = 0. (2.101)

Example 4 Consider the harmonic oscillator with Hamiltonian

H(p, q) = p2

2m
+ 1

2
mω2q2; (2.102)

the equations of motion are solved by

q(t) =
√

2A

mω
sin(ωt), p = mq̇ = √

2Amω cos(ωt).

Here, A is the amplitude of oscillation. The energy is E = H(p, q) = Aω.

Through a canonical transformation, one obtains a new Hamiltonian

H̃(A,φ) = Aω, (2.103)

where φ = ωt; so, the new variables are φ, A, with

A = p2

2mω
+ 1

2
mωq2.

Is this transformation canonical?One can verify this property by thePoisson brackets,
using the fact that

10L.D. Landau e E.M. Lifs̆its, Mechanics (Pergamon Press) Chap.7.

http://dx.doi.org/10.1007/978-3-319-71330-4_7
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tan(φ) = mqω

p
. (2.104)

Indeed,

∂A

∂q
= mωq,

∂A

∂ p
= p

mω
,

∂A

∂ p
= p

mω
,

∂φ

∂q
= mω/p

1 + (mωq/p)2
,

∂φ

∂ p
= −mωq/p2

1 + (mωq/p)2

and

{φ, A} = ∂φ

∂q

∂A

∂ p
− ∂φ

∂ p

∂A

∂q
= 1. (2.105)

The coordinate is φ. The canonical equations of motion read as Ȧ = 0, φ̇ = ω.

2.6 Delaunay Elements

We have just seen that the oscillator Hamiltonian (2.102) can be canonically trans-
formed to the amazingly simple form Aω where A is an action, and ω = φ̇, where
φ is an angle variable. This property can be extended to any periodic motion in 1
dimension. Indeed, the equation H(p, q) = E can be solved to find the contour C
in phase space defined by p = p(q, E). The action variable is then

A =
∮

C
pdq, (2.106)

where pdq > 0 along C , while the contour goes from a minimum q = qmin to a
maximum q = qmax and back. Within C , E > H , so

A =
∫∫

dpdqθ(E − H(p, q)). (2.107)

Thus,

∂A

∂E
=
∫∫

dpdqδ(E − H(p, q) =
∫ qmax

qmin

⎧
⎨

⎩

[
dq

| ∂H
∂ p |

]

p>0

+
[

dq

| ∂H
∂ p |

]

p<0

⎫
⎬

⎭ .

(2.108)

The Hamilton equation says that ∂H
∂ p = q̇ , and from each dq, one gets two positive

contributions dq
|q̇| . One can write
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d A

dE
=
∮

dq

q̇
=
∮

dt = T, (2.109)

where T is the period. One can conclude that the frequency is

ν = ∂E

∂A
, (2.110)

which is a newHamilton equation, with E = E(A) as the newHamiltonian and A the
transformed momentum. Let φ denote the new coordinate, canonically conjugated
to A; Hamilton’s equations read as:

∂E

∂A
= φ̇ = ν (2.111)

∂E

∂φ
= 0. (2.112)

This technique also lends itself to the solution of periodic motions with more than
one degree of freedom, and, in this case, is easy to use provided that one can separate
the variables. Then, for each (p, q) pair, there is a separate contribution Aq = ∮ pdq
to the action. For the Kepler problem, which is separable, the Lagrangian is

L = 1

2
m
[
ṙ2 + r2φ̇2

]+ G
Mm

r
, (2.113)

and since φ is cyclic, pφ = mr2φ̇ is just the angular momentum and is a constant of
the motion. Hence, Aφ = ∮ pφdφ = 2π pφ. The Hamiltonian is:

H = p2r
2m

+ p2φ
2mr2

− G
Mm

r
(2.114)

where, for an orbit with H = E ,

pr = mṙ = ±
√

2mE + 2G
Mm

r
− p2φ

r2
. (2.115)

So,

Ar =
∮

prdr (2.116)

is the area inside the curve in the (r, pr ) plane of equation p2r = − p2φ
r2 + 2m (E+

GmM
r

)
. Solving this simple problem, it turns out that
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Ar = −2π pφ + πGMm

√
2m

−E
. (2.117)

Solving for E , one finds the new Hamiltonian

E = −2π2G2M2m3

(Ar + Aφ)2
. (2.118)

The two frequencies νr = ∂E
∂Ar

and νφ = ∂E
∂Aφ

are equal, in agreement with the
well-known fact that the orbits are closed. This is related to the special form of the
potential, which allows for the conservation of the Runge–Lenz vector

R = p ∧ L
m

− GmM
r
r

(2.119)

which is pinned at the aphelion-perihelion direction (except for circular orbits, when
R vanishes). In order to verify that, one must compute the time derivative of the
two terms of R using d

dt
r
r = r2v−r(r.v)

r3 , where v = dr
dt , and the equation of motion.

The French astronomer and mathematician Charles–Eugene Delaunay (1816–1872)
demonstrated the usefulness of this method in the study of planetary motion. In
addition, it is always possible to solve integrable systems. By the term integrable one
refers to systems having N degrees of freedom and N constants of the motion Ik
such that all the Poisson brackets vanish, i.e. {I j , Ik} = 0. One would say that the
conserved quantities are in involution.

2.7 Noether Theorem

We have noted that if ∂L
∂q = 0, then the coordinate q is cyclic, and the Lagrange

Equation says that the corresponding momentum (which is called the conjugate
momentum) is conserved. This results admits an important generalization about sys-
tem that have continuous symmetries. This means that there is a family of invertible
transformations, such as translations or rotations, that leave the equations of motion
unchanged. It is always possible to define a product of transformations as the result
of applying the first after the second, and technically the family of symmetry trans-
formation is always a Group, but we shall not use any Group property below. For
notational convenience, I shall discuss this for one coordinate q, since the extension
to several ones is trivial. Consider the symmetry transformation that changes the
virtual paths as follows:

Tα : q(t) → Q[q(t),α];
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for α → 0 to the varied path Q[q(t),α] is close to q(t). In the action integral,

L(q, q̇, t) → L(Q, Q̇, t) = L(q, q̇, t) + α

(
∂L

∂q

∂Q

∂α
+ ∂L

∂q̇

∂ Q̇

∂α

)
.

Since Q̇ = ∂Q
∂q q̇ , we must insert

∂ Q̇

∂α
= ∂2Q

∂q∂α
q̇,

and since we are varying a physical path, we can replace ∂L
∂q by d

dt
∂L
∂q̇ .

To sum up, an infinitesimal transformation changes L by

ΔL = α

[(
d

dt

∂L

∂q̇

)
∂Q

∂α
+ ∂L

∂q̇

d

dt

∂Q

∂α

]
= α

d

dt

(
∂Q

∂α

∂L

∂q̇

)
. (2.120)

So, the Lagrangian changes by a total derivative and the equations of motion are not
modified by a generic infinitesimal transformation; however, the path is transformed
by Tα, and so the action along the path q(t) changes by

ΔS = α

∫ t2

t1

dt
d

dt

(
∂L

∂q̇

∂Q

∂α

)
= Λ(t2) − Λ(t1), (2.121)

where

Λ(t) = p(t)
∂Q(t)

∂α
(2.122)

and p = ∂L
∂q̇ is the momentum conjugated with q = Q(α = 0). Since Tα is a

symmetry, the transformed path must have identical S as the original path, therefore
ΔS = 0 and we may conclude that the Λ(t) must be conserved. Any continuous
symmetry leads to a conservation law. This reasoning extends to systems with n
degrees of freedom, and thus

Λ(t) =
∑

n

pn(t)
∂Qn(t)

∂α
. (2.123)

It is straightforward to show that a translational symmetry leads to the conservation of
angular momentum. For the motion in a central field, the transformation is a rotation
φ → φ+α, r → r and the rotational symmetry leads to the conservation of angular
momentum. The most important application is in field theory, in which the theorem
gives the conserved currents.
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2.8 Chaos

The great french mathematician Pierre-Simon Laplace was certainly inspired by
Classical Mechanics in his influential concept of determinism. He wrote:

We may regard the present state of the universe as the effect of its past and the
cause of its future.

Later thinkers have contrasted the use of probability in QuantumMechanics with
the determinism of Classical Mechanics. However, the presence of chaos and uncer-
tainty in the classical events of real life is familiar to everybody as a consequence of
the impossibility of exactly knowing the initial conditions. Any dynamical system
with n degrees of freedom is described by a set of Hamilton first-order differential
equations:

dxi
dt

= φi (x1, x2, · · · , xn). (2.124)

The equations of motion for slightly different initial conditions must result from
xi → xi + Δxi . Using a first-order expansion of the Hamilton equations, we obtain

dΔxi
dt

=
n∑

j=1

∂φi

∂x j
Δx j . (2.125)

Now we wish to know the evolution in time of the deviations Δxi , and the result
depends on the problem. For an integrable system that can be described in terms of
independent constants of the motion, all the Δxi must remain bound. More gener-
ally, one might assume that φi is an analytic function of its arguments and one can
approximate ∂φi

∂x j
= Mi j by a constant matrix, at least for small Δxi . This leads to

Δxi =
∑

j

(eMt )i jΔx j (0). (2.126)

Now, if M has eigenvalues Li , then eMt has eigenvalues eLi t ; the real parts of Li

are called Lyapunov exponents and lead to an exponential (initial) growth of the
deviations from the unperturbed problem. This is the butterfly effect, which makes
it impossible to make long-term weather forecasts. By contrast, since in Quantum
Theory there are no trajectories, there is no quantum chaos, but there are studies
concerning the quantum behavior of classically chaotic systems.



Chapter 3
Dirac’s Delta

The Dirac delta is the prototype distribution and
is an essential tool of Theoretical Physics.

3.1 Definition of the δ

Let us start with the Heavyside1 θ discontinuous function, also known as the step
function, defined by

θ(x) =
⎧
⎨

⎩

1 se x > 0,
1
2 if x = 0,
0 se x < 0,

With it we can define a rectangular-shaped peak function, of width 2α,

δα(x) = θ(α2 − x2)

2α
, (3.1)

such that ∫ ∞

−∞
δα(x)dx = 1. (3.2)

Now pick an analytic2 function φ and the integral
∫ ∞
−∞ δα(x)φ(x)dx which gives an

average of f for x ∈ (−α,α) and if α is so small that φ(x) hardly varies in the
interval le result is close to φ(0). In other words,

1Oliver Heaviside (1850–1925) was probably the first to use the δ before Dirac, and the work of
George Green also implies the concept. Often the names are not historically fair.
2A function f is analytic in 0 if there is an interval including 0 in which the Taylor series converges
to f .
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lim
α→0

∫ ∞

−∞
δα(x)φ(x)dx = φ(0).

In this way we have justified the exchange of limit and integration

∫ ∞

−∞
δ(x)φ(x)dx = φ(0), (3.3)

where
δ(x)

?= lim
α→0

δα(x). (3.4)

As a rule, this exchange of limits is earnestly forbidden; limξ→0 limλ→0
λ

λ2+ξ2
= 0

while limλ→0 limξ→0
λ

λ2+ξ2
blows up. The sign of this fault is that Dirac’s delta δ(x),

a very special function, which is zero everywhere except that it is ∞ in 0. Actually,
is too singular to meet the minimum of assumptions that are needed to define and
handle functions in Analysis. For instance, we should always be able to calculate
the square of a function, but δ(x)2 is meaningless. However, we can define δ(x) as a
distribution.3 This means that this object exists only to be handled with special rules
(that we are going to see) and used under integral and this is the only way it can give
numbers at the end of the calculation. Despite such limitations, distributions are so
useful in Physics that we cannot simply do without them.

There is another way to define Dirac’s δ4 that is,

δ(x) ≡ d

dx
θ(x), ∀x, (3.5)

Again, this does not exist when we work with ordinary functions. However, con-
sider a function φ(x) that we assumed to be good (φ(x) ∈ C∞) and the ordinary
integral ∫ ∞

−∞
dxφ(x)θ(x0 − x) =

∫ x0

−∞
dxφ(x).

Differentiating with respect to the upper limit,

d

dx0

∫ ∞

−∞
dxφ(x)θ(x0 − x) = φ(x0).

3This procedure recalls the introduction of the negative numbers by the Chinese and the imaginary
numbers by Gerolamo Cardano and Rafael Bombelli in the Italian Renaissance. It is sometimes
necessary to invent new objects that break the old rules, and doing that properly can be very
rewarding. Thus, in order to be able to differentiate under the integral sign, one introduces the
distributions.
4P.A.M. Dirac (Bristol 1902 - Tallahassee, Florida, USA 1984), English physicist with a Swiss
father, wrote the relativistic equation for the electron. Dirac gave many fundamental contributions
to Physics, always with a taste for mathematical beauty. Among other achievements, he formulated
the theory of the magnetic monopole, predicted the existence of antimatter, proposed the bra-ket
notation, invented the technique of Second Quantization. He received the Nobel in 1933.



3.1 Definition of the δ 45

If we take the liberty to exchange differentiation and integration, we discover that
the exchange is correct provided that

∫ ∞

−∞
dxφ(x)δ(x − x0) ≡ φ(x0). (3.6)

This is an alternative way to arrive at (3.3), starting from (3.5), and implies that

∫ x

−∞
duδ(u − x0) = θ(x − x0).

Evidently, δ(x − x0) = 0 for x �= x0, while x0 blows up. Note that xδ(x) = 0. We
start to see that it is nice to find a proper way to exchange limits, and this is the reason
for introducing the generalized functions, or distributions; the δ is just the prototype.
We can think of the δ as the limit of sequences of ordinary functions δα for α → 0.
The meaning is:

lim
α→0

∫ ∞

−∞
dxφ(x)δα(x − x0) = φ(x0).

There are many simple functions, with the property (3.2) that are used as alternative
δα. One is:

sin2
(
x
α

)

π
(
x2
α

)
.

(3.7)

Here is a list of other δα(x) that are often used:

1

π

α

x2 + α2
,
−1

π
Im

1

x + iα
,

1

α
√

π
exp

[

− x2

α2

]

,
sin

(
x
α

)

πx
.

From the last example, one can derive an important integral representation of δ. Since

∫ 1
α

− 1
α

eiqxdq = 2
sin

(
x
α

)

x
= 2πδα(x),

it follows that

δ(x) = 1

2π

∫ ∞

−∞
eiqxdq. (3.8)

This implies that, given an arbitrary function f = f (x) and its Fourier component

F(k) =
∫ ∞

−∞
dx

2π
eikx f (x),
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one gets a one-shot proof of Fourier’s theorem

∫ ∞

−∞
dkF(k)e−ikx =

∫ ∞

−∞
dke−ikx

∫ ∞

−∞
dy

2π
eiky f (y)

=
∫ ∞

−∞
dy

2π
f (y)2πδ(x − y) = f (x).

The δ is the Fourier transform of f (x) = 1. Since δ(x) vanishes everywhere
except at x = 0, it is evident that for each interval (a, b),

∫ b

a
dxδ(x − x0) =

{
1, a < x0 < b,
0, x0 /∈ (a, b).

Since δ(x) is real, the representation (3.8) implies that

δ(−x) = δ(x)∗ = δ(x);

so, δ is even, and for real a,
δ(ax) = δ(|a|x);

hence,
∫ ∞
−∞ dxφ(x)δ(ax) = 1

|a|
∫ ∞
−∞ d(|a|x)φ(x)δ(|a|x) = φ(0)

|a| , and so,

δ(ax) = δ(x)

|a| . (3.9)

Now let g(x) be a good function with an isolated zero in x = x0; we may write

in an interval including x0 g(x) ≈ dg
dx

∣
∣
∣
x0

(x − x0). Assuming that g′(x0) �= 0,

δ(g(x)) = δ

[
dg

dx

∣
∣
∣
∣
x0

(x − x0)

]

= δ (x − x0)
∣
∣
∣
dg
dx

∣
∣
∣

. (3.10)

If g(x) has a countable set of zeros at x = xα, α = 1, 2, · · · , we may use the fact

that around each zero, g(x) ≈ dg
dx

∣
∣
∣
xα

(x − xα). Then,

δ(g(x)) =
∑

α δ (x − xα)
∣
∣
∣
dg
dx

∣
∣
∣

. (3.11)

Some relations that are familiar among ordinary functions must be generalized to
the space of distributions. Consider the equation

x f (x) = 1. (3.12)
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If f is a distribution, since xδ(x) = 0, the general solution is

f (x) = P
1

x
+ Cδ(x), C = constant, (3.13)

where P selects the principal part of the integral, defined by

P
∫ ∞

−∞
1

x
φ(x)dx ≡ lim

ε→0

(∫ −ε

−∞
+

∫ ∞

ε

)
1

x
φ(x)dx . (3.14)

P allows us to tackle some kinds of divergence in 0.
We also need the derivatives of the δ. To find out how

δ′(x) = − d

dx
δ(x) (3.15)

works, we integrate by parts

∫ ∞

−∞
dxδ′(x)φ(x) = −

∫ ∞

−∞
dxδ(x)φ′(x) = −φ′(0). (3.16)

This can be iterated to give the action of the nth derivative,

∫ ∞

−∞
dxδ(n)(x)φ(x) = (−1)n φ(n)

∣
∣
x=0 . (3.17)

Moreover, the definition of δ has a natural extension to 3d space with

∫

Ω

d3rδ(3)(
−→r − −→r 0) =

{
1,−→r 0 ∈ Ω,

0,−→r 0 /∈ Ω.
(3.18)

In Cartesian coordinates,

δ(3)(
−→r − −→r 0) ≡ δ(−→r − −→r 0) = δ(x − x0)δ(y − y0)δ(x − z0). (3.19)

We can go to curvilinear coordinates by introducing the Jacobian determinant, there-

fore, while d3x →
∣
∣
∣
∂(x,y,z)
∂(ξ,η,ζ)

∣
∣
∣ dξdηdζ, the δ must be divided by the same Jacobian:

φ(
−→r 0) = φ(x0, y0, z0) =

∫

φ(
−→r )δ(−→r − −→r 0)dxdydz

becomes
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φ(
−→r 0) = φ(ξ0, η0, ζ0)

= ∫
φ(

−→r )

⎧
⎨

⎩

δ(ξ − ξ0)δ(η − η0)δ(ζ − ζ0)
∣
∣
∣
∂(x,y,z)
∂(ξ,η,ζ)

∣
∣
∣

⎫
⎬

⎭

∣
∣
∣
∂(x,y,z)
∂(ξ,η,ζ)

∣
∣
∣ dξdηdζ.

(3.20)

For example, in spherical coordinates,

δ(−→r − −→r 0) = δ(r − r0)δ [cos(θ) − cos(θ0)] δ(φ − φ0)

r2
. (3.21)

Using the δ, one can define a measure for a hypersurface in an N dimensional
space. Take for example for N = 2, (xy plane) and consider the family of closed
curves defined by

f (x, y) = C.

The invariant measure ω(C) of a member of the family can be defined by

ω(C) =
∫ ∫

dxdyδ(C − f (x, y)) = d

dC
Ω(C), (3.22)

where

Ω(C) =
∫ ∫

dxdyθ(C − f (x, y)) (3.23)

is the area inside f = C ; in general, ω(C) does not coincide with the length, but is
still independent of the system of coordinates.

3.1.1 Volume of the Hypersphere in N Dimensions

The equation of the Hypersphere of radius R in the N-dimensional space RN is

√
√
√
√

N∑

i

x2i = R.

Its volume

ΩN (R) =
∫

∑N
i x2i <R2

dx1dx2 . . . dxN =
∫

RN

dN xθ(R − r), (3.24)

for dimensional reasons, is ΩN (R) = cN RN , where cN is the volume of the Hyper-
sphere with R = 1. A neat trick allows us to calculate cN . Consider the following
Gaussian integral:
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I =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 . . .

∫ ∞

−∞
dxNe

− ∑N
i x2i =

(∫ ∞

−∞
dxe−x2

)N

= π
N
2 .

Putting
∑N

i x2i = r2, we may write

I =
∫

dN xe−r2 . (3.25)

But e−r2 = ∫ ∞
0 dRe−R2

δ(R − r), therefore

I =
∫

dN x
∫ ∞

0
dRe−R2

δ(R − r) =
∫ ∞

0
dRe−R2 d

dR

∫

dN xθ(R − r).

So

I =
∫ ∞

0
dRe−R2 d

dR
ΩN (R). (3.26)

Now the calculation is immediate. Inserting ΩN (R) = cN RN , one obtains:

I = NcN
∫ ∞
0 dRRN−1e−R2 = NcN

∫ ∞
0 RdRRN−2e−R2

= NcN
2

∫ ∞
0 dtt

N−2
2 e−t = NcN

2

(
N
2 − 1

)! (3.27)

Here, we met the factorial function

x ! =
∫ ∞

0
t x e−t dt, (3.28)

which is n! = ∏n
k k for integer n, but

(
1
2

)! =
√

π
2 ,

(
3
2

)! = 3
√

π
4 , and so on. Equating

this to πN/2, we find

ΩN (R) = πN/2

(
N
2

)! R
N . (3.29)

Therefore, Ω1 = 2R, Ω2 = πR2,Ω3 = 4
3πR

3, Ω4 = 1
2π

2R4, and so on. The
measure of the surface of the Hypersphere as defined above is ωN (R) = d

dRΩN (R).

3.1.2 Plancherel Theorem

Let α(t),β(t) be functions belonging to L2 (that is, such that
∫ ∞
−∞ |α(t)|2dt and

∫ ∞
−∞ |β(t)|2dt exist). Let us denote their Fourier transforms by α(ω),β(ω). Then,
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∫ ∞

−∞
α(t)β∗(t)dt =

∫ ∞

−∞
α(ω)β∗(ω)d

( ω

2π

)
. (3.30)

By inserting the definition of the Fourier transforms on the r.h.s, exchanging the order
of integration and using the δ functions, one can readily check this important result.
One can note that the l.h.s. resembles a scalar product

∑
i αiβ

∗
i , where the discrete

index i is replaced by a continuous one, and a similar interpretation is possible for
the r.h.s. So, in a sense, this theorem is related to the invariance of scalar products
under unitary transformations.



Chapter 4
Some Consequences of Maxwell’s Equations

Maxwell published his Treatise in 1873 and his equations have
not been revised, continuing to be unharmed through the
revolutionary changes produced by Relativity and Quantum
Mechanics. Nevertheless, the quantum theory of light and the
use of lasers have revealed many new phenomena. This might
appear to be a contradiction, but it is the plain truth. I prepare
the reader to appreciate how this came about by discussing some
important facts about classical electromagnetism in this chapter.

4.1 Fields and Potentials

The (classical) electromagnetic fields in vacuo that satisfy given boundary conditions
can be calculated through Maxwell’s equations. In the Gauss system they read as:

−→∇ · −→
E = 4πρ,−→∇ · −→
B = 0,−→∇ ∧ −→
E = − 1

c
∂
−→
B

∂t ,−→∇ ∧ −→
B = 1

c
∂
−→
E

∂t + 4π
c

−→
j ,

(4.1)

where
−→
j and ρ are current density and charge density. In all, they are 4 functions of

space and time. The fields can be computed and measured, however, it amazing that
theMaxwell equations succeed in giving us 6measurable quantities (3 components of−→
E and 3 of

−→
B ) having only 4 quantities in input. This is a most remarkable property

of the electromagnetic field. Moreover, we can obtain the same field more easily by
working out 4 quantities, namely the scalar potential φ and the vector potential

−→
A ,

such that

© Springer International Publishing AG, part of Springer Nature 2018
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B = −→∇ ∧ −→
A ,

−→
E = −−→∇ φ − 1

c
∂
−→
A

∂t .

From the potentials, one readily obtains the fields, but the potentials are unobservable
and largely arbitrary. So, the 4 potentials not only contain all the information about
the 6 field components, but also a disposable amount of irrelevant information. This
property, called gauge invariance, is a key property of electromagnetism. The choice
of the potentials is called gauge. In the Lorentz gauge div

−→
A + 1

c
∂φ
∂t = 0, theMaxwell

equations give us:

[
∇2 − 1

c2
∂2

∂t2

] −→
A = − 4π

c

−→
J ,

[
∇2 − 1

c2
∂2

∂t2

]
φ = −4πρ.

We shall obtain the potentials by solving these equations according to the Green’s
functionmethod. For all r �= 0, ∇2( 1r ) = 0; indeed, for sphericosymmetric functions

φ(r), one can write1 ∇2φ(r) = 1
r

∂2

∂r2 (rφ(r)), and since φ = 1
r , the result is 0. But

this is not the end of the story. Considering a sphere around the origin,
∫

d3r∇2

(
1

r

)
=

∫
d3rdiv grad

1

r
=

∫

S
grad

1

r
· −→n dS

and since grad( 1r ) = −−→r
r3 ,

−→n = −→r
r , dS = r2dΩ , one is left with

∫
d3r∇2

(
1

r

)
= −4π.

In conclusion, ∇2( 1r ) = −4πδ(−→r ). The function g(r) = 1
r la is called Green’s

function2 of the Poisson equation

∇2V (
−→x ) = −4πρ(

−→x ).

The solution is the sum of all the potentials of all the point charges that make up
ρ(

−→x ), namely,

V (
−→x ) =

∫
d3x ′g(

−→x − −→x ′)ρ(
−→x ′).

1An equivalent alternative which is in use is: ∇2φ(r) = 1
r2

∂
∂r (r2 ∂

∂r φ(r)).
2The Green’s function are named after the Englishman George Green, a solitary amateur genius
who working in his mill in the Midlands invented mathematical methods essential for the theory of
electromagnetism and all of the modern Theoretical Physics, although at his time the Dirac’s delta
was not yet known.
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4.2 Green’s Function of the Wave Equation and Retarded
Potentials

As a prototype calculation illustrating the main steps necessary to compute G for
many systems of interest, I show in detail how the same reasoning leads to theGreen’s
function of the wave equation; by definition,

[
∇2 − 1

c2
∂2

∂t2

]
G(

−→r , t) = −4πδ(−→r )δ(t).

Clearly, an instantaneous localized disturbance in (
−→r = 0, t = 0) stands as a source

of a potential G that later arrives in (
−→r , t). It turns out that G(

−→r , t) = δ(t− r
c )

r . To
see that, outside the origin, G(

−→r , t) solves the wave equation, we use ∇2φ(r) =
1
r

∂2

∂r2 (rφ(r)). For r �= 0, ∇2
(

δ(t− r
c )

r

)
= 1

r
∂2

∂r2 δ(t − r
c ); now, for each f (t − r

c ), it

holds that
∂2

∂r2
f
(
t − r

c

)
= 1

c2
∂2

∂t2
f
(
t − r

c

)
;

in particular, ∇2
(

δ(t− r
c )

r

)
= 1

c2
∂2

∂t2

(
δ(t− r

c )

r

)
, and

[
∇2 − 1

c2
∂2

∂t2

]
G(

−→r , t) = 0, r �= 0.

To include the effect of the δ, integrate [∇2 − 1
c2

∂2

∂t2 ]G(
−→r , t) over a sphere S with

any radius R0 centered on the origin. We denote the surface of the sphere by δS.

Contribution of the term in ∇2

By the Gauss theorem:

∫

S
∇2

(
δ(t − r

c )

r

)
d3r =

∫

δS
grad

(
δ(t − r

c )

r

)
·
−→r
r
dS.

In spherical coordinates,

∫

S
∇2

(
δ
(
t − r

c

)

r

)
d3r =

∫ [
grad

(
δ
(
t − r

c

)

r

)
·
−→r
r

]

r=R0

R2
0dΩ. (4.2)

Now, ∂
∂x r = x

r , and so grad r = −→r
r . Hence,

grad δ
(
t − r

c

)
= −1

c
grad r δ′

(
t − r

c

)
= −

−→r
rc

δ′
(
t − r

c

)
,
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and

grad
δ
(
t − r

c

)

r
= −

−→r
r2c

δ′
(
t − r

c

)
= −

−→r
r3

δ
(
t − r

c

)
.

Put into (4.2); the angular integral is 4π and

∫

S
∇2

(
δ
(
t − r

c

)

r

)
d3r = −4π

{
δ

(
t − R0

c

)
+ R0

c
δ′

(
t − R0

c

)}
. (4.3)

T erm in
∂2

∂t2

Again using ∂2

∂r2 δ(t − r
c ) = 1

c2
∂2

∂t2 δ(t − r
c ),

∫
S d

3r 1
c2

∂2

∂t2

(
δ(t− r

c )

r

)
= ∫

S d
3r 1

r
∂2

∂r2 δ
(
t − r

c

)

= 4π
∫
0R0drr2 1r

∂2

∂r2 δ
(
t − r

c

)
.

Integrating by parts, we obtain

4π
∫ R0

0
dr

{
∂

∂r

[
r

∂

∂r
δ
(
t − r

c

)]
− ∂

∂r
δ
(
t − r

c

)}
.

The integrand is a derivative, and one gets

= 4π

[
r

∂

∂r
δ
(
t − r

c

)
− δ

(
t − r

c

)]r=R0

r=0

.

So,

∫

S
d3r

1

c2
∂2

∂t2

(
δ
(
t − r

c

)

r

)
4π

{
−δ

(
t − R0

c

)
+ R0

c
δ′

(
t − R0

c

)
+ δ(t)

}
. (4.4)

End result

In conclusion, putting together (4.3) and (4.4),

∫

S

[
∇2 − 1

c2
∂2

∂t2

]
G(

−→r , t)d3r = −4πδ(t),

and so [
∇2 − 1

c2
∂2

∂t2

]
G(

−→r , t) = −4πδ(−→r )δ(t).
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Fig. 4.1 Potentials of a
moving point charge, which
moves along a trajectory
R(τ )referring to the origin
O. The observation point is
x, while r indicates the path
of the radiation emitted at
time τ towards the observer.
That radiation will be
detected in x at time
t = τ + r

c

O

x

r

R

In summary, G(
−→r , t) = δ(t− r

c )

r is the Green’s function of the wave equation. Hence,
from Fig. 4.1 we obtain the potential at −→x due to a distribution of charges, namely,

φ(
−→x , t) = ∫

d3x ′ ∫ dt ′G(
−→x − −→x ′, t − t ′)ρ(

−→x ′, t ′)

= ∫
d3x ′ ∫ dt ′

δ(t ′ − t + |−→x −−→x ′|
c )

|−→x − −→x ′| ρ(
−→x ′, t ′).

(4.5)

Integrating over source times t ′, one obtains the retarded potential

φ(
−→x , t) =

∫
d3x ′ ρ

(−→x ′, t − |−→x −−→x ′|
c

)

|−→x − −→x ′| ; (4.6)

similarly,

−→
A (

−→x , t) =
∫

d3x ′
−→
j

(−→x ′, t − |−→x −−→x ′|
c

)

|−→x − −→x ′| . (4.7)

4.3 Lienard–Wiechert Potentials

The use of the Dirac δ helps considerably in finding the potentials at the observation
point −→x due to a point charge performing an arbitrarily assigned trajectory

−→
R (t).

In the case of φ, from (4.5) with

ρ(
−→x ′, t ′) = eδ(−→x ′ − −→

R (t ′)),
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one gets, integrating on −→x ′ first and writing τ in place of t ′,

φ(
−→x , t) = e

∫
dτ

δ
(
τ − t + r(τ )

c

)

r(τ )
,

−→r (τ ) = −→x − −→
R (τ ).

We see that the potential is still of the Coulomb form, but is retarded: the light is
received at time t , which is the emission time τ plus the propagation time r(τ )

c ; the
latter depends on the position of the charge when the light is emitted.

Let τ ∗ denote the solution to τ ∗ = t − r(τ ∗)
c .

Then,

δ

(
τ − t + r(τ )

c

)
= δ(τ − τ ∗)∣∣∣ d

dτ

[
τ − t + r(τ )

c

]∣∣∣
= δ(τ − τ ∗)∣∣1 + 1

c
dr
dτ

∣∣ .

Here, the absolute value is unnecessary, | drdτ
| < c. Since the charge is at

−→
R , its

velocity is −→v = d
−→
R

dτ
, while the time derivative of the distance covered by the light is

dr(τ )

dτ
= d

dτ

√−→r (τ ) · −→r (τ ) = 1

2
√−→r · −→r

2−→r · d
−→r
dτ

;

since d−→r
dτ

= −−→v ,

dr(τ )

dτ
= −

−→r · −→v
r

.

Consequently,

δ

(
τ − t + r(τ )

c

)
= δ(τ − τ ∗)

1 − −→r ·−→v
rc

,

and the potential is

φ(
−→x , t) = e

[r − −→r ·−→v
c ]τ ∗

. (4.8)

Starting from −→
j = e−→v δ(−→x − −→

R ),

the same reasoning leads to the vector potential

−→
A (

−→x , t) = e

c

[ −→v
r − −→r ·−→v

c

]

τ ∗
. (4.9)
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4.4 Geometrical Optics and Fermat’s Principle

Let u represent any component of the potential or of the field of a monochromatic
electromagnetic wave with frequency ν in some region of space. Consider the prop-
agation in a medium in which the velocity of light v = c

n may differ from c and
depend on position due to a spatially varying refraction index n; in addition, we may
have complicated boundary conditions, like, e.g., in an optical instrument. In the
wave equation (∇2 − 1

v2
∂2

∂t2 )u = 0 we may set u(x, y, z, t) = exp[iω(
S(x,y,z)

c − t)].
The new unknown S is known as the Eikonal. By substitution, one readily finds that
it satisfies

c2 − v2[(grad(S)2 − ic∇2S] = 0.

This nonlinear partial differential equation looks harder to solve than the wave equa-
tion. However, it simplifies in the limit S → ∞ (that is, large phases and short
wavelengths) when it reduces to the Eikonal equation

(gradS)2 = n2. (4.10)

To explore the meaning of S, we observe that in one dimension, this becomes dS
dx =

± c
v
; integrating between xA and xB, one finds S(xB) − S(xA) = ±c

∫ xB
xA

dx
v(x) . Apart

from a factor ±c, this is just the time the light takes to go directly from xA to
xB . Even in 3 dimensions, the Eikonal has the same meaning, with the additional
specification that the path allows for the shortest possible time. Indeed, Eq. (4.10)
has the same structure as the Hamilton–Jacobi equation (2.83) where S is the action,
grad(S) = p is the momentum of the material point and E is the energy. For a free
particle, it reads ( ∂S

∂x )2 + ( ∂S
∂y )

2 + ( ∂S
∂z )

2 = E . The equation describes corpuscles that
go along trajectories that make the action an extremum. These may be interpreted
as the light particles3 whose trajectories are the light rays. The wavelengths may
be taken to be short in a given problem when all other lengths are much longer.
In this limit there is no diffraction and the laws of Geometrical Optics are a good
approximation. In the mechanical problem, S is the action and the path taken by the
particlemakes S an extremum. In the optical problem, S is an Eikonal, and the optical
path grants the minimum time the light can take to go from A to B. The discovery
that the light rays follow the quickest path is Fermat’s principle, which is the oldest
variational principle in Physics.4 A light ray from P = (−1, y1) in a medium with
refraction index n1 reaches Q = (1, y2) a solid with refraction index n2, following
Snell’s law5 n1sin(θ1) = n2sin(θ2). The time the light takes to go from P to Q is
given by ct = n1

√
1 − (y1 − yS)2 + n2

√
1 − (y2 − yS)2; looking for the minimum

3The quantum mechanical photons are emitted and adsorbed like particles but travel like waves,
as we shall see below. However the description in terms of point particles works fine at short
wavelengths.
4Pierre de Fermat stated it in 1662.
5This law is actually credited to the Arab mathematician Ibn Sahl in a manuscript of 984.

http://dx.doi.org/10.1007/978-3-319-71330-4_2
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Fig. 4.2 Fermat’s principle. Left panel: a light ray from a medium with refraction index n1 to a
solid with refraction index n2. Right panel: an inhomogeneous medium behaves like a series of thin
interfaces

as a function of yS, we differentiate and find n1
y1−yS√

1−(y1−yS)2
+ n2

y2−yS√
1−(y2−yS)2

= 0

which can be rewritten as Snell’s law. A light ray in an inhomogeneous medium can
be thought of as crossing a large number of interfaces following Snell’s law, thereby
minimizing the time it takes (Fig. 4.2).

4.5 Coherent Light

The plane wave with electric field E(r, t) = E exp(ikr − ωt) is perfectly coherent
light, meaning by that the field at one r and t allows to predict the field at all places
and times.

In terms of the electric field E(r, t), the correlation function

g(1)(r1, r2, t) = 〈E(r1, t) · E(r2, t + τ )〉
〈E(r, t)∗E(r, t)〉 (4.11)

measure the degree of coherence, which is low in the case of thermal light; it tends
to be enhanced at small τ . For the intensity I the correlation function between two
points at the same time

g(2)(r1, r2) = 〈I (r1, t)I (r2, t)〉
〈E(r, t)∗E(r, t)〉 (4.12)

also fluctuates in the case of natural light. A plane wave is perfectly coherent and
the correlation functions do not fluctuate and never decay; the laser light is highly
coherent.

4.5.1 The Measurement of Stellar Diameters

Disappointingly, even the nearby stars appear point-like in the most powerful tele-
scopes. The Very Large Telescope under favourable conditions attains a resolution of
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2×10−3 arc seconds; Sirius has a diameter 2.617×106 km and its distance obtained
by parallax is 8.6 light years. A light year is about 9.46 1012 km, This implies an
angular diameter of about 5 × 10−6 radiants, which is below the detection limit.
However, the diameter quoted above was obtained thanks to interesting interfero-
metric techniques.

The light of a given frequency coming from a point source is a plane wave with
a well-defined wave vector, so it is spatially coherent, but if the source is extended
and round, the wave vectors of light rays coming from points that are one diameter
apart make an angle Δα; then, there is a bunch of wave vectors Δk in the light
and we say that the transverse coherence is lost. In the Michelson interferometer,
the monochromatized light impinging on two mirrors at points r1 and r2. The lines
perpendicular to the mirrors make an angle φ. When φ = Δα is the angle between
the k vectors from opposite sides of the star, the light reflected by two mirrors and
sent to a lens converges on a screen and interferes. There, the field is E(r1)+E(r2) =
Ek1(r1)+ Ek2(r1)+ Ek1(r2)+ E2(r2). The intensity is modulated by an interference
term g(1)(r1, r2, t) (see (4.11)). For a monochromatic light of wave vector k, g(1) is
modulated by a factor cos( kdφ

2 ) where d = |r1 − r2|. For larger φ the interference is
lost. In this way, Δα can be measured.

A practical limitation of this method arises from the atmospheric turbulence that
causes rapid fluctuations of the phase of the electric field. In 1956 Robert Hanbury
Brown and Richard Twiss6 demonstrated a method based on the measurement of
intensity correlation at two different points. The stellar light collected at two differ-
ent points. The two beams were collected by separate photomultipliers, where they
produced fluctuating currents I1 + ΔI1 and I2 + ΔI2 (where ΔIi denotes the fluc-
tuations). In this way, the cross-correlation function G = 〈ΔI1ΔI2〉 was obtained
and was converted in electronic signals which were used to measure the intensity
correlation function (4.12) electronically. It is easily seen that the modulating fac-
tor cos( kdφ

2 ) again allows us to measure the stellar diameter without the disturbing
influence of the amplitude fluctuations.

Recent Quantum versions of the Hanbury Brown and Twiss effect are deferred to
Sect. 26.4.2.

6Correlation between photons in two coherent beams of light, R. Hanbury Brown and R. Twiss,
Nature 4497, 27 (1956).

http://dx.doi.org/10.1007/978-3-319-71330-4_26


Chapter 5
Thermal Physics

Any macroscopic object in thermal equilibrium contains so
many particles in chaotic motion that the methods of Mechanics
are totally useless. This chapter is a simple introduction to
Thermodynamics and classical Statistical Mechanics.

5.1 The Principles of Thermodynamics

Thermodynamics is an axiomatic part of Theoretical Physics, which is presented as
a set of phenomenological axioms or principles. Any investigation into the reasons
why the principles are true and how they are related to micro-Physics belongs to the
domain of Statistical Mechanics, while Thermodynamics gives guidelines that are
never contradicted by experiments, at least for macroscopic objects. Actually, the
principles are simple and part of the common wisdom by now, but Thermodynamics
deduces profound consequences.

Zero-th Principle

The zeroth principle of Thermodynamics states that two bodies can be in thermal
equilibrium and that such a state is transitive: if bodies A and B are equilibrium and
B is in equilibrium with C, then A is in equilibrium with C.

This allows us to introduce the concept of temperature, which has a precise mean-
ing only in equilibrium.

First Principle

Nowadays, the invoice of electricity reminds us that heat requires energy, but the
physical nature of heat has long remained unknown. It was really a scoop when Joule
in the 1840s measured the mechanical equivalent of the calorie, which is the amount
of heat required to raise the temperature of 1g of water by 1 ◦C at the pressure of 1
atmosphere; the modern value is 4.1855J. The First Principle of Thermodynamics
establishes the conservation of mechanical and thermal energy. If some amount δQ
of heat is supplied to any system, the effect is to increase its internal energy and/or

© Springer International Publishing AG, part of Springer Nature 2018
M. Cini, Elements of Classical and Quantum Physics,
UNITEXT for Physics, https://doi.org/10.1007/978-3-319-71330-4_5
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Fig. 5.1 Carnot’s cycle
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P

T1

T2
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(P3, V3, T2)
(P4, V4, T2)

to cause some work to be performed. So,

δQ = dU + PdV, (5.1)

where dU is the increase in internal energy, P the pressure, V the volume, and PdV
is the work performed by the system. This result implies that a perpetual motion
machine of the first kind (producing work without a power supply) cannot exist.

Second Principle

However, it is possible to make a motor, that is, a thermal machine that converts
thermal energy intomechanical energy. To proceed,we need the notion of a reversible
transformation. Such a process must take place so slowly and gradually that at all
times, the system has pressure, temperature, and volume very close to the equilibrium
values; therefore, it must be possible to do the same transformation in reverse, driving
the system back to the same states of quasi-equilibrium.1

Aiming to build a motor, we need first to build a cycle, i.e., a process in which
the fluid after producing some work, returns to its initial state (ΔU = 0), ready to
iterate the process. Consider a fluid such that the state is characterized by (P, V,T),
that is, pressure, volume and temperature. Carnot’s cycle is defined by the reversible
transformations in Fig. 5.1, namely, two isotherms at temperatures T1 and T2 and two
adiabatics. The machine is reversible and can work as a motor or as a refrigerator. In
Fig. 5.1, we see its use as a thermal machine, which absorbs heat Q1 at temperature
T1 and loses heat Q2 at a lower temperature T2. The first Principle grants that the
work done in the cycle is W = Q1 − Q2; the efficiency is defined as

1A piece of diamond is out of equilibrium under normal conditions, because Graphite is the equi-
librium form of Carbon; however since the kinetics of the transformation is extremely slow, one
can do reversible transformations on diamond as well. Actually, the seemingly simple concepts on
which Thermodynamics is based are far from obvious.
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η = W

Q1
= 1 − Q2

Q1
.

The possibility of trading heat for work implies that the heat content and the work
done by a fluid depend on the previous history of themachine. Inmathematical terms,
δQ is not the differential of a function of the parameters that specify the state, since
in a cycle, ΔQ ≡ ∮

δQ might be non-vanishing, and the fluid can have undergone
many cycles before returning to a given state.

The first principle would allow for η = 1 (total conversion of the heat from a
source to work, equivalent to unlimited energy for free).

The situation changes radically when we introduce the Second Principle. The
Second Principle (stated by Kelvin and Planck) says that it is impossible to build
a perpetual motion machine of the second kind. This would consist of a device that
makes mechanical work at the expense of the heat taken from one source. Clausius
states the same principle in an even simpler and more striking way: heat goes spon-
taneously from hot to cold bodies, and work is needed to force it go from cold to hot.
Actually, the two statements are equivalent. If it were possible to extract work from
the cold source (in violation of the Kelvin–Planck statement), then we could use the
work to heat the hot source, thus violating the Clausius statement. If it were possible
to violate the Clausius statement, we could produce and increase the temperature
difference between two bodies at the expense of the energy of the cold body; then
we could action a Carnot cycle and obtain work, still at the expense of the cold body,
violating the Kelvin–Planck statement.

The second Principle puts severe limits on what can be done by the Carnot cycle.
The efficiency of a Carnot cycle depends only on the temperature of the heat sources.
Indeed, if theCarnot cyclesC1 andC2 between the same temperatures had efficiencies
η1 and η2 with η1 > η2 we could use the first cycle to fool the second principle in
the second cycle.

Problem 10 How?

Solution 10 C1 would be used as a motor to produce the amountW1 of work. Using
workW2 < W1, one could use C2 as a freezer, giving back to the hot source the heat
taken by C1. We should be left with an amount W1 − W2 of work, produced at the
expenses of the cold source.

For the same reason, no other cycle can beat Carnot’s cycle in efficiency.
Now we are in position to define the thermodynamic temperature, which is one

of the basic achievements of thermal Physics. It is clear that any definition based on
Mercury, ideal gases or any other (real or ideal)material can be used in a limited inter-
val of temperatures and has no universal significance. But since η depends only on
the temperatures, one can use measurements of η to define a universal thermometric
scale. More precisely, we can define the absolute temperature T such that

T2
T1

= Q2

Q1
; (5.2)
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this law fixes all temperatures, including the extreme ones, in terms of a referential
one, without having to rely on the properties of any substance. We need to be able
to measure amounts of heat. Having done that, we have the extra bonus that in any
cycle (and in any combination of cycles),

Q2

T2
− Q1

T1
= 0 =

∮
δQ

T
.

Thus, the second principle of Thermodynamics grants that in any reversible
transformation at temperature T ,

δQ

T
= dS (5.3)

is the exact differential of a function of temperature, pressure and any other relevant
parameter, which is called Entropy. In any reversible cycle,

∮
dS.

The temperature is dimensionless, while S is energy.

Thermodynamic Potentials

Putting together the first and the second principles, we find that two equilibrium
states close to each other are related by:

TdS = dU + PdV . (5.4)

No doubt, the internal energy U is a function of state, with a well-defined value
independent of the history; this result shows that it is precisely U = U (S, V ), that
is, it depends on S e V . However, it is not easy to work with it, since S is extensive
(i.e., proportional to the size of the system) like U . As a result, it is not so easy to
measure: there is no such instrument as a entropometer.

From (5.4), we obtain the temperature,

T =
(

∂U

∂S

)

V

, (5.5)

which can be measured easily with a thermometer. To change the independent vari-
able, we introduce chemical potentials by means of Legendre transformations. The
free energy is suitable for us;

F = U − TS. (5.6)

The differential is, using (5.4),

dF = dU − TdS − SdT = −PdV − SdT . (5.7)
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Hence, (
∂F

∂V

)

T

= −P,

(
∂F

∂T

)

V

= −S. (5.8)

F = F(V,T) is particularly well-suited for processes at constant volume, because
only the T dependence is left. However, keeping V constant during a transformation
may be difficult. Usually, one prefers to let V vary while keeping the pressure P
constant. A possible choice is the enthalpy H(S,P) defined by

H ≡ U + PV . (5.9)

One finds that
dH = TdS + VdP.

This contains the differential of entropy, which has the drawbacks we have just
discussed. The natural choice for most experimental conditions is the Gibbs free
energy

G = U + PV − TS. (5.10)

Its differential reads as
dG = −SdT + VdP.

Maxwell Relations

Comparing (5.4) with

dU =
(

∂U

∂S

)

V

dS +
(

∂U

∂V

)

S

dV .

one finds that

T =
(

∂U

∂S

)

V

, P = −
(

∂U

∂V

)

S

.

Since the mixed derivatives ofU (S, V )must agree, one obtains theMaxwell relation

(
∂T

∂V

)

S

= −
(

∂P

∂S

)

V

.

Other Maxwell relations can be obtained from the other potentials. For example,
from the differential of Enthalpy, one finds

T =
(

∂H

∂S

)

P

, V = −
(

∂H

∂P

)

S

.

Problem 11 What Maxwell relation follows?
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Solution 11 (
∂T

∂P

)

S

= −
(

∂V

∂S

)

P

.

Often, it is preferable to work with a thermodynamic system embedded in an
environment (or thermal bath) with which it can exchange not only heat but particles,
too. When the number of particles is variable, one introduces the chemical potential
μ by extending (5.4):

dU = TdS − PdV + μdN .

This is familiar, since we ground our electrical apparatus to avoid shock hazards; the
electric potential is the μ that we must control.

Perfect Classical Gas

For a perfect gas, the thermodynamic properties depend on the number f of degrees
of freedom of the molecules; f = 3 for monoatomic gases to which only trans-
lation contributes, but diatomic molecules have f = 5 due to rotational freedom;
extra degrees of freedom at relatively high temperatures (several hundreds of Kelvin
degrees) result from molecular vibrations. The internal energy is:

U = f

2
NKBT . (5.11)

The equation of state is the Clapeyron law

PV = NKBT = nRT , (5.12)

where KB = 1.381 × 10−16 erg
◦K is Boltzmann’s constant, n the number of moles, and

R = NAKB is called the gas constant. For an adiabatic expansion (δQ = 0), inserting
(5.11) into dU + PdV = 0, one finds (1 + f

2 )PdV + f
2VdP = 0. Integrating, one

finds PV γ =constant, where γ = f+2
f . The specific heat is by definition the thermal

capacity of a mole (N = NA). The specific heat at constant volume is

CV =
(

δQ

dT

)

V

(the notation means that the derivative is taken by an infinitesimal change of temper-
ature keeping constant volume V ). One obtains

CV = T

(
∂S

dT

)

V

.

The specific heat at constant pressure, which is generally easier to measure, is CP =
T
(
dS
dT

)
P
.

Problem 12 Calculate CP
CV

for a perfect gas.
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Solution 12 One finds CV = f
2NAKB,CP = (1+ f

2 )NAKB. At constant volume, the
term PdV is discarded, while at constant pressure, V can be eliminated using the
Clapeyron equation. From this result, one finds that CP

CV
= γ.

The Entropy of the Universe is Growing

Entropy is maximum in equilibrium. Take a container A having volume VA that is
part of a larger container B having volume VB; A is separated from the rest of B by
a partition and is filled with some perfect gas. Suppose that the walls are thermal
insulators. When the gas is in equilibrium at temperature TA, we suddenly remove
the partition. I think that you will easily agree that the gas will occupy all the volume
B, and after some time, it will be in equilibrium again at some temperature TB.

Actually, since in the process,
∫

δQ = 0 and the work done on the gas or by the
gas is nothing, ΔU = 0. For a perfect gas, U = U (T), so TB = TA. The process is
a typical irreversible process and the second principle implies that

SB − SA >

∫ B

A

δQ

T
= 0.

To compute SB − SA, consider a reversible isothermal expansion. Since U = U (T),

the expansion is isothermal if dU = 0. To expand the gas, we slowly move a piston,
but the gas makes work on the piston when the volume increases by dV . Now,
dU = 0 → δQ = PdV , and we must supply this heat in the process. The change i
entropy is

SB − SA =
∫ B

A

PdV

T
,

and inserting P from (5.12), one obtains

SB − SA = NKB log

(
VB

VA

)

. (5.13)

Themotion of eachmolecule ismechanically reversible, but the time reversed process
never occurs. The future can be distinguished from the past because of the sign of
SB − SA. The spontaneous evolution of any system increases the entropy. This is the
arrow of time.

More generally, we can consider a reversible transformation in which, besides
changing the volume we also exchange heat with n moles of perfect gas. This can
be done by adding an adiabatic transformation. Then, N = nNA and dS = nCV dT +
PdV , and inserting Clapeyron’s law,

dS = nCV dT + nR
dV

V
;

integrating,

SB − SA = nCV ln

(
TB
TA

)

+ nR ln

(
VB

VA

)

. (5.14)
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It is important to note that the entropy is an extensive quantity, that is, each molecule
contributes a molecular entropy SB−SA

N , and the set of two independent tanks of gas
has an entropy that is the sum of the two entropies. This is like the kinetic energy of
molecules, that sumup to give the internal energy of the gas; however, the observation
is more subtle, since the molecular entropy depends on T , which is not a property of
the single molecule.

Even the Universe as a whole (Sect. 8.12) is growing old, the star formation rate is
decreasing and the synthesis of heavy elements inside stars is clearly an irreversible
process. The cosmological models that proposes cyclic or pulsating universes must
face the basic problem of ’resetting’ the entropy at the start of each cosmic cycle.

Third Principle

The third principle of Thermodynamics was formulated by Walther Nernst in 1906–
1912. It states that S → 0 for T → 0. This removes the arbitrariness that was left by
the second principle. One can show that this requires that the specific heat C of every
perfect crystal tends to 0 at absolute zero, provided that the lowest state of the system
is unique. More generally, for any system δQ

T = CδT
T must stay small for any process

with T → 0, making it increasingly difficult to extract heat from a substance when
the temperature gets lower. The most important implication is that it is impossible
to reach the absolute zero in a finite number of operations. Today, there are people
working with ultra-cold atoms at micro-Kelvin temperatures and manipulating them
to make studies on the quantum behavior of matter under such conditions. One could
wonder what the significance of the third principle is when a disordered mixture is
brought to ultra-low temperatures; how is it possible that the measure of disorder
S gets small by cooling? But at absolute zero, the system should get ordered; the
paradox comes from the fact that the kinetics for approaching the equilibrium S = 0
state gets extremely slow at low T .

5.2 Black Body

The objects that we observe in everyday life are colored according of their nature.
Viewed inwhite light, a body turns blue if it absorbsmainly red light and red if it better
absorbs blue radiation; it looks white if it reflects all that is visible. Any body reflects
some light, even without being an ideal mirror. A mirror also preserves direction and
images. Some bodies absorb little light and reflect little; they look transparent and
colorless. It is the light that the body reflects that we see and gives it a color. If a body
in daylight reflects little visible light, it appears black; but coal also reflects a bit. An
ideal black body absorbs all radiation completely. Such a body is an idealization of
great importance in the historical development of Theoretical Physics. It is due to
Kirchhoff.2 The starting point was a focus on equilibrium conditions. Only a deep

2Gustav Kirchhoff was a German physicist (Königsberg (now Kaliningrad, Russia), 1824- Berlin,
1887). He established the well-known laws on linear electric circuits, and, together with Bunsen,

http://dx.doi.org/10.1007/978-3-319-71330-4_8
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reflection allowed for the discovery that this variability, which is so necessary to our
life, is due not only to the nature of the body but primarily to the color of light, and
especially to the lack of equilibrium between thermal radiation and matter. (Life is
itself a phenomenon that is far from equilibrium.) According to the first principle of
Thermodynamics, energy must be conserved. For a body in equilibrium, the energy
that is absorbed is re-emitted. This leads to the idea of an equilibrium distribution in
frequency of the radiation absorbed and emitted by all bodies.

The ancient philosophers did not even remotely imagine such things. Everybody
knew that a piece of iron when heated starts to emit light that changes from red brown
to red to orange to yellow to with increasing temperature, and become much more
bright. They also knew that all hot bodies behave in essentially the same way. Of
course, the problem is complicated by the fact that our eye sees only wavelengths
between 4000 and 8000Å. In the nineteenth century, experiments led to Wien’s
law νmax ∝ T , saying that the frequency ν where maximum intensity is issued is
proportional to the temperature. The power emitted increases as ν4, as we shall see.

A closed cavity in equilibrium at temperature T is filled with thermal radiation,
which is emitted from the walls. In equilibrium, as much has to be absorbed as is
emitted. Through a small hole in the walls, one can observe this radiation. This is an
experimental realization of the black body, since every radiation entering the hole
from outside will be partially reflected by the walls many times and eventually will
be absorbed.

Kirchhoff Laws

Consider a cavity in equilibrium at temperature T . It is full of isotropic radiation
in equilibrium with the walls. Let u(ν,T) denote the energy per unit volume and
frequency ([u(ν,T)] = erg.s

cm3 ). The energy density is u(T) = ∫ ∞
0 u(ν,T)dν. Gustav

Kirchhoff, in 1859, has shown that u(ν,T) does not depend on the nature of the walls
of the cavity. Suppose two different cavities A and B at the same temperature had
different densities uA(ν,T) and uB(ν,T). We could let them exchange radiation and,
using a color filter, we could allow the exchange of energy at frequencies such that
uA(ν,T) > uB(ν,T) but not at frequencies such that uA(ν,T) < uB(ν,T). In this
way, B should become hotter than A. The perpetual motion machine of the second
kind would be operating in contrast to the Second Principle. Kirchhoff concluded
that u(ν,T)must be some universal function. One can put objects of different colors,
bright or opaque, but at equilibrium the same u(ν,T) is obtained.

To explain that, one must consider the energy balance of a surface element dS of
the walls in the unit time. The energy emitted in an frequency interval dν centered
around ν is e(ν,T)dS,where e is the emissive power which depends on the nature of
the body. On the other hand, when isotropic radiation with frequency ν falls on the
same surface element, the nature of the body also determines the absorption power
a(ν,T) which is the ratio of absorbed energy over incidence energy. An ideal body
with a ≡ 1 is called black. Remarkably, Kirchhoff found that the ratio e(ν,T)

a(ν,T)
does

invented the spectroscope; he also discovered Cesium and Rubidium. He wrote “Vorlesungen über
mathematische Physik”.
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not depend on the body. Indeed, the same amount of energy in the interval dν falls in
the unit time over each dS of the walls and of the surfaces of all the bodies therein; a
fraction, a(ν,T) · dE is absorbed, but an equal amount, e(ν,T) · dS must be emitted.
There is a separate equilibrium condition at each frequency. For two bodies 1 and 2,
the equilibrium conditions are:

{
e1(ν,T)dS = a1(ν,T)dE(ν,T),

e2(ν,T)dS = a2(ν,T)dE(ν,T),

and we may conclude that

e1(ν,T)

a1(ν,T)
= e2(ν,T)

a2(ν,T)
= dE(ν,T)

dS
.

The universal function dE(ν,T)

dS is the emitting power of the black body; it is the
energy that is emitted for unit time and frequency by the unit surface of the black
body. Experimentally, one can make a good black body by producing a small hole
on the surface of a cavity kept at temperature T . If the temperature is several hundred
degrees Celsius the hole appears to an external observer as a bright spot. Its absorbing
power is high (nearly all the incident radiation bounces on the walls many times and
is absorbed). The emissive power is very high.

dE(ν,T)

dS
= c

4
u(ν,T). (5.15)

To see the relation between dE and u let us take the surface element dS as the origin
of spherical coordinates; a volume element of the cavity at (r, θ,φ) is

dV = r2drdΩ = r2drdφ sin(θ)dθ;

at time t = 0, dV contains the energy u(ν,T)dνdV in the frequency interval dν.
Such radiation is isotropic, and a fraction will arrive at dS at time t = r

c . Seen from
dV, the surface element is reduced by a factor of cos(θ) and occupies a fraction
fdS = dS cos(θ)

4πr2 of the spherical surface of radius r. In the time between t = 0 and
t = r

c , dS receives the contributions of the elements dV up to a distance r;

dE = dS
∫ ct

0
drr2

∫ 2π

0
dφ

∫ π
2

0
dθ sin(θ)f ,

the integral over θ covers the half space “above the surface”. Then, we must divide
by t to get the energy per unit time. The result is:

dE(ν,T) = c
u(ν,T)dS

4π
2π

∫ 1

0
d cos(θ) cos(θ) = c

4
u(ν,T)dS.
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Stefan–Boltzmann Law

Consider an empty cavity with volume V in thermal equilibrium at temperature T .
We know the cavity contains electromagnetic radiation, the black body radiation.
According to the Kirchhoff laws, the spectral components u(ν,T) obey a universal
law (which will turn out to be Planck’s law in later chapters); the total internal energy
is

U = Vu(T). (5.16)

U = U (V,T) does not depend purely on T , as for the classical ideal gas, but also
on Volume. There is a pressure on the walls. It is known from Electromagnetism that
the radiation pressure P is related to the energy density u by

P = u

3
. (5.17)

A thought experiment is needed here. The cavity is closed by a (frictionless) piston
in contact with the heat source at temperature T and the radiation is used as the fluid
to make a reversible Carnot cycle. The four phases are:

A isothermal expansion V → V +ΔV at temperature T . The internal energy grows
by uΔV and the work PΔV is performed; therefore, from the First Principle, we
know that from the source at temperature T , an amount of heathQ = (P+u)ΔV
is extracted;

B adiabatic expansion (cavity and piston are now thermally isolated) V + ΔV →
V + ΔV + dV with infinitesimal dV . The system makes work at the expense of
its internal energy; the temperature decreases to T −dT ,while the pressure drops
to P − dP with dP = dP

dT dT ;
C isothermal compression with the cavity in contact with the source at temperature

T − dT . The volume decreases from V + ΔV + dV and crosses the adiabatic
through the initial state. The volume decreases by ΔV (neglecting higher order
corrections). The heat given to the cold source at temperature T − dT is Q =
[(P − dP) + u]ΔV ;

D an adiabatic compression closes the cycle.

Up to higher order infinitesimals, the work done n the cycle is dW = dPΔV ; the
efficiency is

η = dW

Q
= dPΔV

(P + u)ΔV
= dP

dT

dT

P + u
.

But the Second Principle says that the efficiency must be dT
T . So,

dP

dT
= P + u

T
.

Substituting (5.17) and integrating, one finds

u = aT 4.
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This is the Stefan–Boltzmann law. A hot black body is in equilibrium with an energy
density, which grows with the fourth power of Temperature; this is also the trend of
the power radiated by a black body in the absence of equilibrium, when the body
cools down. The stars have internal heat sources and emit by irradiation in agreement
with the Stefan–Boltzmann law, since they are black to a good approximation. Stefan
obtained the result experimentally. The theory was formulated by Boltzmann3 in
1884; the constant a remained an empirical parameter for a long time, until it was
determined with the advent of Quantum Mechanics.

Problem 13 The black body radiation carries entropy S. Consider the phases A
and B of the above Carnot cycle; calculate ( ∂S

∂V )T , ( ∂S
∂T )V and the second derivatives

( ∂2S
∂T∂V ).

Solution 13 The variation of S is

dS = δQ

T
= dU + PdV

T
.

From (5.16),

dU = u(T)dV + V
∂u

∂T
dT .

Also inserting (5.17), one finds

dS =
4
3udV + V ∂u

∂T dT

T
. (5.18)

From (5.18), dS = ( ∂S
∂V )dV + ( ∂S

∂T )dT , where

(
∂S

∂V

)

= 4u

3T
,

while (
∂S

∂T

)

= V

T

∂u

∂T
.

According to the second Principle, dSmust be exact; hence, the mixed derivatives
must be equal:

∂

∂T

(
∂S

∂V

)

= ∂

∂V

(
∂S

∂T

)

.

Therefore,
4

3T

∂u

∂T
− 4

3

u

T 2
= 1

T

∂u

∂T
,

3Ludwig Boltzmann (Vienna 1844- Duino (near Trieste) 1906, Austria (now Italy(suicide))) pio-
neered Statistical mechanics with Gibbs.
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that is,
∂u

∂T
= 4

u

T
.

One can again derive the Stefan–Boltzmann law from this result.

Problem 14 The temperature of the solar photosphere is TS ∼ 5800 ◦K and the size
of the solar disk seen from here is 1

4
◦
. Evaluate the mean temperature of the Earth

assuming that the Earth and the Sun are black bodies. What would the temperature
of the Earth become if the distance from the sun were doubled?

Solution 14 The angle is π
4×180 rad, therefore, the fraction of the solid angle occupied

by the Sun is ΔΩ = ∫
dφd cos(θ) = 2π(1−cos(α))

4π = 4.76 10−6. By the Stefan–
Boltzmann law, the power goes with T 4. Therefore the ratio of temperatures is
TE

TS
= 0.0467. We obtain TE = 270.1 ◦K, which is realistic (only slightly low,

mainly because we neglected the greenhouse effect). Dividing α by 2 we should find
191.6 ◦K.

5.3 Statistical Mechanics

The results of many experiments performed on macroscopic bodies depend on the
thermal state. The theoretical interpretation of these experiments in microscopic
terms is the subject of statisticalmechanics,which, unlikeThermodynamics, assumes
prior knowledge of the interactions between the microscopic components of the sys-
tem, i.e., the Hamiltonian H(p, q). Moreover it is supposed to know certain parame-
ters that determine the system from the macroscopic point of view, such as pressure,
temperature, number of molecules for each species, and so on. All kinds of measure-
ments may be considered. Observables can be macroscopic, like the pressure of a gas
as a function of the temperature or its specific heat, but all spectroscopies, including
those designed to determine the microscopic properties of solids, are influenced by
temperature effects and must be interpreted through statistical mechanics.

For example, Zartmann, in a famous experiment, measured the speed distribution
of the molecules of a gas. The gas is contained in a tube; a small hole in the bottom
of the tube is opened for a very short time and the molecules come out with the speed
they had within the gas. The molecular beam so obtained impinges on a quickly
spinning wheel, and the molecules arrive in different points depending on the time
of flight.The velocity distribution, that one can convert into an energy distribution; is
an asymmetric bell-shaped distribution whose maximum moves to higher energies
by increasing temperature. Thus Zartmann verified the law established theoretically
by Maxwell4 (in obvious notation)

4Note that
∫∞
0

√
xe−xdx =

√
π
2 , and so

∫
dN = N .
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dN = N
2√
π

1

(KBT)3/2
e− ε

KBT
√

εdε. (5.19)

We shall derive this law in Sect. 5.7.1.
Most of theNA ∼ 6×1023 molecules in amole have a kinetic energy of orderKBT

but a few are much slower or much faster than that. Every macroscopic measurement
of some magnitude f (p, q) which depends on the same arguments asH(p, q) returns
its average f̄ ; the microscopic state cannot be measured and is therefore irrelevant.
One cannot evaluate the evolution startingwith an integral of the canonical equations.
The proper use of the Hamiltonian was found by Gibbs.5

5.4 Gibbs Averages

Suppose our macroscopic system is a mole of some substance that we wish to treat
as a complicated mechanical system; a point γ of the phase space or Γ space has
2s coordinates (s are space coordinates and s the conjugated momenta). So, the
coordinates

q1, q2, . . . , qs, p1, p2, . . . , ps

of γ are just the arguments of theHamiltonian. This huge list of variables specifies the
microscopic state (or simply microstate) of the system. The evolution of the system
is described by the chaotic motion of γ(t).

The outcome of the macroscopic experiment of some magnitude f (γ) does not
depend on any details of γ(t), and many microstates would give the same outcome.
There are only small fluctuations, which scarcely perturb a regular behavior. If the
measurement is done in equilibrium, and the system is perturbed in any way, the
equilibrium can be reached again after a characteristic waiting time. If the measure-
ment is then repeated, the measurement yields the equilibrium results again, without
any memory of the twists of γ(t) in Γ space. Therefore, obtaining γ(t) from γ(0) is
not only impossible, but also irrelevant. What one measures is better represented by
a time average,

f (p, q) = 1

T

∫ T

0
f (p, q)dpdq, T → ∞,

and the above discussion strongly suggests that f̄ must be independent of the initial
condition γ(0). The time average would wash out all the information gained by
the integration of the equations of motion and any distinction between the many
microstates that would give the same results.

5The great theoretician Josiah Willard Gibbs (New Haven, Connecticut, U.S.A., 1839 - Yale 1903)
was the first professor of Mathematical Physics in U.S.A.
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We must do without detailed initial conditions, since the system evolves sponta-
neously towards equilibrium6 within some characteristic times.

The fundamental approach of Statistical Mechanics is credited to J.W. Gibbs, and
the basic principle is very simple:

The fundamental assumption of Statistical Mechanics is: if a system in equilibrium has
energy E, all the microscopic states of energy E are equally likely.

Consider a systemwith HamiltonianH(p, q) in a state specified by all the relevant
macroscopic parameters, like pressure, volume, number of particles, total energy.
What can we say about its microscopic state? Gibbs considered the probability dP
that it be in a given bunch dΓ of microstates; more precisely,

dP = ρ(p, q)dΓ, (5.20)

where dΓ = ∏s
i dpidqi is the volume element of phase space Γ of the system. ρ is

the distribution function . It must be normalized, that is,
∫

spazio Γ

ρ(p, q)dΓ = 1.

Thus,

f̄ =
∫

f (p, q)ρ(p, q)dΓ.

A priori all the microstates are equally likely; therefore, all the portions of phase
space compatible with the macroscopic parameters must be treated in the same way.
H(p, q) determines ρ(p, q) and thus the probability of any given element dΓ. Put
another way, one considers an ensemble of systems with the same H and with given
macroscopic parameters; they are distributed in Γ space according to ρ(p, q); we
perform a statistical average on this ensemble. Is the ensemble average really equal
to the time average of the corresponding quantity that one would compute from
the microscopic evolution? This is a very good question, which is best known as
the ergodic problem. Physicists use this as a sort of postulate, but from the formal
mathematical viewpoint, it is a difficult issue, which has been settled by Fermi and
others, but only under certain assumptions. However one fact is true: based on this
assumption, Statistical Mechanics works.

Liouville Theorems

The Gibbs theory, of course, is mathematically sound and does not break down with
a change of Lagrangian coordinates (punctual transformation (p, q) → (P,Q)). In
other words,

f̄ =
∫

f (P,Q)ρ(P,Q)

s∏

i

dPidQi =
∫

f (p, q)ρ(p, q)
s∏

i

dpidqi.

6If the system is the Universe, it is quite clear that it is not in thermal equilibrium, however, who
knows if it evolves towards an equilibrium of some kind?
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This requires that the Jacobian be 1, that is,

∂(Q,P)

∂(q, p)
= 1 = ∂(q, p)

∂(Q,P)
.

In the case of a single degree of freedom, one finds

∂(Q,P)

∂(q, p)
= Det

( ∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p ,

)

= {Q,P} = 1

because the Poisson brackets are invariant, as shown in Chap.2. Liouville has shown
that this remains true in the presence of many degrees of freedom, and therefore

∫
dqdp =

∫
dQdP,

that is, if you cut out a volume inside Γ , its extension is conserved during the
evolution.

A second Liouville theorem states that

dρ

dt
= 0. (5.21)

This is tantamount to saying that ρ depends only on the constants of the motion, and
an ensemble evolves like an incompressible fluid. Indeed,

dρ

dt
= ∂ρ

∂t
+ {ρ,H},

and while ∂ρ
∂t = 0 since ρ cannot have any explicit time dependence.

5.5 Microcanonical Ensemble

The Microcanonical Ensemble is a collection of a huge number of isolated systems;
they must be systems with the same number of particles and about the same energy
E0; the energy uncertainty δE must be so small that adding it to the system does
not change the experiment appreciably, while it may well be large compared to a
molecular energy.

The microstates are random. All the magnitudes, including the conserved energy
E0, can only be specifiedwithmacroscopic accuracy. It is not necessary to specify δE
further. Experimentally, it is very hard to work with isolated systems on equilibrium,
but conceptually, this is a good starting point.We need to find the distribution function
ρ(p, q). This is the probability density in Γ space, proportional to the number of

http://dx.doi.org/10.1007/978-3-319-71330-4_2
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systems in the ensemble that have their position in an element dΓ around the point
(p, q). In a macroscopic description, δE → 0 and ρmicro must be proportional to
δ(H(p, q) − E0) and normalized to 1. Letting ω(E0) = ∫

dΓ δ(H(p, q) − E0) we
arrive at the microcanonical distribution

ρmicro(p, q) = δ(H(p, q) − E0)

ω(E0)
, ω(E0) =

∫
dΓ δ(H(p, q) − E0).

Here, ω(E0) is the measure of the constant energy surface.
Wemust perform statistical averages over an ensemble, specifically amicrocanon-

ical ensemble of systems that are represented inΓ -space by points that are uniformly
scattered in the gap dΩ between the hypersurfaces H = E0 and H = E0 + δE. Con-
sider a perfect gas in equilibrium and suppose the volume of the container divided
into two parts A and B with volumes VA and VB. In phase space, there is a set Γ of
points that correspond to unbelievable situations in which all particles in A. These
points are treated on the same footing as the others. All ways of distributing the
molecules are represented in the ensemble and the energy is the same for all of them.
Imagine the molecules are numbered. The probability that number 1 is in A is VA

VB
,

and the same holds true for the others; the probability of having all in A is ( VA
VB

)N .

Therefore, if VA
VB

1
2 and N = 1023, the probability of having all in A is 10 to a power

−3 × 1022. This is practically 0 in Physics. The probability of having k molecules

on one side and N − k on the other side is P(k,N) = 2−N

(
N
k

)

, and is shown as a

function of k in the next figure for N = 20 and N = 80. While fluctuations around
the most probable value always exist, very large deviations are impossible. This is
why the evolution of the system has a preferred direction, from unlikely to likely.
This explains the arrow of time (Fig. 5.2).

Boltzmann generalized this concept and conceived a Γ space divided into small
cells (the criterion of smallness will be made more precise below). Let δΓ denote
the volume of each cell,which corresponds to a microstate of the system, with all the
q and p specified with a small uncertainty. The cells are finite, but so small that the
uncertainty of q and p is much smaller than any characteristic length or momentum

Fig. 5.2 Histograms of the probability distributions of N molecules in two equal boxes. Left: N =
20 Right: N = 80. The distribution becomes very sharp when N grows
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of the problem. Since q × p is an action, let the uncertainty of pq be a small action7

h; then the volume of the cell is hs, where s in the number of degrees of freedom of
the system.

h is kept finite. In this way, each volume of Γ space corresponds to a very large
number of cells. Let Ωtot(E) be the volume of the region of Γ where the energy of
the system is in the interval between 0 and E and the volume, pressure and other
macroscopic parameters are also fixed; dividing the volume by per hs one obtains a
very large number of microstates

Wtot(E) = Ωtot(E)

hs
.

This number is a measure of Ωtot(E) for the given macroscopic conditions.
A small increment δE corresponds to a gap δΩtot(E0) of phase space that contains

some number W (E0) of cells.

W is the number of microstates that appear macroscopically as the same state of the system,
with energy E.

Note that W is given by

W (E0)h
s = δΩtot =

(
∂Ωtot

∂E

)

δE = ω(E0)δE. (5.22)

W is proportional to the measure of the constant-energy hypersurface

W = ∂Wtot

∂E
δE. (5.23)

The argument is very ingenious. It appears to stress the mathematics, but it is
perfectly sound. Since δE is not infinitesimal, W is a large number. This appears to
be a difficulty, since thenW is defined only up to a multiplicative constant. If we can
vary h, we must vary W accordingly. Nature actually defines a scale for h, which is
Planck’s constant, and that does not fit in the classical scheme.

Now we can compare two hypothetical states of a macroscopic system, both
compatible with the macroscopic parameters. Compare for example, the state with
the gas that occupies all the available volume and the state in which the gas fills only
one part of the partition. We have seen that the numberW of ways in which the latter
situation can occur is negligible. Stateswith largerW are closer to equilibrium,which
requires maximum W . The equilibrium states are those with maximum entropy S.
This reasoning motivated Boltzmann to look for a functional link of the form

S = f (W ).

7Plack’s quantum h had not yet been discovered.
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S is extensive: the entropy of a system formed by two parts is the sum of the entropies
S = S1 +S2, while by the laws of probability,W = W1W2. Therefore, f must satisfy

f (xy) = f (x) + f (y).

That is enough to identify f with the logarithm: so Boltzmann proposed the funda-
mental equation

S = KB logW, (5.24)

that prompts a statistical meaning of entropy. This is the microcanonical definition
of S. Remarkably, any change of h or δE, logW only changes an additive constant like
in thermodynamics, but S is a state function. According to the enlightening equation
(5.24), S is a measure of our ignorance of the microstate of the system. The system
evolves by increasing the entropy; in a sense, it is shy and tries to hide the microstate
by minimizing our knowledge of it. S increases with the degree of disorder. Only at
absolute zero is the microstate unveiled because the system is compelled to reach
the minimum energy state, and then S = 0 in agreement with the third principle of
thermodynamics. However, the prudish system does not allow this, since one cannot
reach absolute zero!

5.5.1 Entropy of the Perfect Gas

Consider a perfect gas of N atoms with mass m, and Hamiltonian

H =
N∑

i

p2i
2m

.

in a volume V . To obtain S by (5.24), we need the number of cells of volume h3N

in the set of Γ space where the energy is ≤E. The projection of this domain on the
space of coordinates q1 . . . q3N is a hypercube with side V 1/3; its projection on the
space with coordinates p1 . . . p3N is a hypersphere, and therefore,

Wtot(E) = 1

h3N

∫ N∏

j

d3pjd
3qjθ

(

2mE −
N∑

i

p2i

)

.

Integrating over q yields VN , and we must work out

Wtot(E) =
(
V

h3

)N

Ω3N (
√
2mE),
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where Ω3N (R) is the volume of the hypersphere of radius R in 3N dimensions, see
(3.28). Consequently,

Wtot(E) ≡ Ωtot(E)

h3N
π

3N
2

(
3N
2

)!
(
V

h3

)N

(2mE)
3N
2 = 1

(
3
2N

)!
[
V

h3
(2πmE)3/2

]N
. (5.25)

So,

log(Wtot(E)) = N log

[
V

h3
(2πmE)3/2

]

− log

[(
3N

2

)

!
]

.

Using Stirling’s formula, one obtains

lnWtot = N log

[

V

(
4πm

3h2
E

N

) 3
2

]

+ 3

2
N . (5.26)

According to (5.24), (5.22), (5.23) in order to calculate S, we must take the
logarithm of W = ∂Wtot

∂E . By (5.25),

Wtot(E) = constant × E
3N
2 ⇒ W (E)

∂Wtot

∂E
= 3N

2E
Wtot .

So,
logW (E) = logWtot + logN + costante.

Recalling (5.22) and (5.23), this result has a geometrical content. In terms of the
volume Ω(E) of the hypersphere, it gives the measure ω(E) of its hypersurface. By
Eq. (5.26), the logarithm of Wtot(E) for large N is dominated by the terms in N lnN
plus terms linear in N ; the factor that allows us to transform Ω(E) into ω(E) is a
logarithm, which diverges for N → ∞, but much more slowly than the dominant
terms. For this reason, the logarithm is negligible in the thermodynamic limit. The
constant δE is even more negligible. To sum up, logω(E) and logΩtot are equal in
the thermodynamic limit N → ∞. Therefore, we take Ω(E) instead of ω(E)δE.
Thus,

S

KB
= logWtot(E) = N log

[

V

(
4πm

3h2
E

N

) 3
2

]

+ 3

2
N . (5.27)

To test the validity of the present statistical approach, we can compare it with the
result (5.14), from thermodynamics. Does it agree? No!!

The Paradox

Gibbs noted that this honest calculation (done applying the known rules) leads
to a paradox. The entropy is an extensive quantity, that is, it is proportional to N .
The expression (5.27) for S is surely wrong since it is not extensive. So the rules
must be changed, but how? To fix this severe problem, Gibbs proposed a new and

http://dx.doi.org/10.1007/978-3-319-71330-4_3
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very far-reaching physical idea. He suggested that the phase space for a system
of N identical molecules is not Ω(E), but Ω(E)

N ! (in the usual action units). Now,
N ! = N(N − 1)(n − 2) . . . 3.2.1 is the number of permutations on N objects. All
the micro-states that differ by permutations of the particles are identified by Gibbs,
that is, they are taken as the same configuration. Classically the exchange of two like
atoms should lead to a different microstate, since it is possible (in principle, not in
reality) to observe them continuously as they move and exchange place; at least, it
is possible to mark them somehow, in the same way as billiard balls are marked by
chalk without a visible effect on their trajectories. According to Gibbs, atoms cannot
be treated like tiny billiard balls. Then, S → S − logN ! ∼ S − (N logN − N) =
S − N log(Ne ) = S + N log( e

N ), and we get the additive result

S

KB
= logΩ(E) = N log

[
eV

N

(
4πm

3h2
E

N

) 3
2

]

+ 3

2
N (5.28)

in agreement with Thermodynamics. Gibb’s intuition anticipated the quantum indis-
tinguishability of identical particles!

5.6 Canonical Ensemble

The basic principle of Statistical Mechanics affirms the equal probability of the
microstates; this idea is realised most directly in the microcanonical ensemble. How-
ever, in order to be able to assign a sharp energy to the microstates, we must assume
that the system does not exchange heat or work with anything. This is a problem,
since experiments are never done on isolated systems. Keeping a system effectively
isolated is very difficult, if not impossible, and interesting problems usually deal
with samples that are in equilibrium with a thermal bath at some temperature.8 In
the Canonical Ensemble the system defined by the Hamiltonian H(p, q) is in equi-
librium at temperature T . The system can be large or small, even a single molecule.
Some interaction with a thermal bath is needed to fix T , but the coupling must be so
small that we can continue to think in terms of H(p, q). These requirements appear
to be conflicting, but they are not really, since the coupling to the external bath can
be very small. In practice it will take a very long time to establish equilibrium by a
tiny interaction, but this is equilibrium Statistical Mechanics and there are no time
constraints.

8A systemat a fixed temperature exchanges energywith a heat bath, therefore its energyfluctuates; in
the microcanonical ensemble the energy is fixed, and therefore the temperature fluctuates. However
for a macroscopic sample such fluctuations are relatively unimportant. Therefore both schemes
should lead to the same results for large systems.
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5.6.1 Canonical Temperature

When a body is in equilibrium with a thermal bath, its internal energy fluctuates.
There are exchanges of thermal energy dE = δQ. Even the entropy fluctuates. In
thermodynamics, dS = δQ

T . Up to now, we have a statistical definition of S, but not
yet of temperature T . In the microcanonical ensemble, a microstate has fixed E, but
T is not sharp. A canonical definition of temperature is inherent in the above remarks.
Let us introduce the inverse canonical temperature

1

T
=

(
∂S

∂E

)

; (5.29)

this links energy fluctuations to entropy fluctuations. Now let us look at the equilib-
rium condition. Suppose an isolated system has two weakly interacting subsystems:

H ∼ H1 + H2, dΓ = dΓ1dΓ2.

They cannot have a sharp energy content, since there are energy fluctuations dE1,
dE2, but, since the mutual interaction is negligible, dE1 + dE2 = 0. The equilibrium
condition is that S must be maximum. Therefore,

dS =
(

∂S1
∂E1

)

dE1 +
(

∂S2
∂E2

)

dE2 = 0.

Thus, the equilibrium is given by

(
∂S1
∂E1

)

=
(

∂S2
∂E2

)

.

This is in line with the definition (5.29) of the temperature.

5.6.2 Information Entropy, Irreversible Gates and Toffoli
Gate

In 1854 at the University College of Cork, George Boole developed a new algebra
to embody the logic of propositions. This is at the foundation of modern computing.
The basic unit of information is the bit, which can be 0 ≡ FALSE or 1 ≡ TRUE.
Logic gates are devices that transform some input bits into output bits according to
some prescribed rule. For instance, NOT is a gate with one input bit and one output
bit; it changes TRUE into FALSE and FALSE into TRUE. Some gates have two
inputs and one output. A AND B (written as A∧B gives 1 if both inputs are 1, while
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A OR B (written as A ∨ B) gives 1 if at least one of the inputs is 1. NOR gives 1 if
OR gives 0 and 0 if OR gives 1. Similarly, NAND gives the opposite reply to AND.

NAND and NOR are two examples of the so-called universal gates. This means
that by combining enough NAND gates (or NOR gates) one can perform any logical
operation and eventually carry on any calculation inBoolean logic algebra.One could
set up a computer that only operates with combinations of one kind of gate, such as
NANDorNOR.However, such gates have the property of wasting some information.
For instance, AND gives 0 if the input is 00, 01 or 10, and NAND gives 1 in such
cases; in this way, the output does not allow for the unique specification of the input.
One classifies such gates as irreversible. In 1961, the German Rolf Landauer worked
at IBMand realized that computationmust be subject to the laws of Thermodynamics
like any other macroscopic process. In particular, this imples that a minimum entropy
amount equal to KBT log 2 is produced when a bit of information is erased. To
avoid this, one can use reversible gates, which, in order to avoid information loss,
must have as many output as input channels. NOT is a trivial example. Many of
them perform permutations of the input bits, and therefore can be represented by
permutation matrices. For example, with three inputs, one has the 8 combinations
000, 001, 010, 011, 100, 101, 110, 111. Taking these in the above order, the Toffoli
gate, proposed by Toffoli in 1980, is represented by the permutation matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

This gate gives an output identical to the input in the following cases: (0, 0, 0),
(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1). Instead, (1, 1, 0) gives (1, 1, 1) and
(1, 1, 1) yields (1, 1, 0). The Toffoli gate is clearly reversible and can be shown9 to
be universal.

5.7 Canonical Distribution

In theCanonical Ensemble, the energy is not fixed, sowemust replace the distribution
function with a different one ρ(p, q). It is evident that possible interactions of other
systems with the thermal bath are not relevant if the bath is very large. The system
S and the bath B make up an isolated system C with Hamiltonian HC ∼ HS + HB;
we may consider C an isolated system having a fixed energy EC . We may deal with

9C.P. Williams, Explorations in Quantum Computing, Springer (2011).
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C in the microcanonical scheme. The element of the phase space is dΓC = dΓSdΓB
and the probability of finding C in dΓC is

dPC = δ(HB + HS − EC)
∫

δ(HB + HS − EC)dΓC
dΓBdΓS .

The denominator depends only on the fixed constant EC ; in this calculation, we wish
to compute the entropy of the bath, and since the constant produces an additive con-
stant to the entropy, we drop it. For every microstate of S, there are manymicrostates
of B such that the total energy is EC . The probability of finding S in dΓS indepen-
dently of the position of B in its Γ space can be obtained by integrating out the bath,
that is, by integrating on dΓB: up to a constant,

dPS = dΓS
∫

δ(HB + HS − EC)dΓB. (5.30)

The integral is the measure of the hypersurface of phase space available to B at a
fixed value of the energy of C. Its calculation appears to be impossible.

However, a remark saves us. The same integral appears in the definition of the
microcanonical entropy of the isolated B:

SB(E) = KB log(WB(E)) = KB log

[

δE
∫

δ(HB − E)
dΓB
hs(B)

]

, (5.31)

where s(B) is the number of degrees of freedom of the bath and E = EC −HS .Here,
δE adds a constant to the entropy and can be ignored. Exponentiating,

e
SB(E)

KB =
∫

δ(HB − E)
dΓB

hs(B)
.

In this case, however, E = EC − HS . Therefore, we need
∫

δ(HB − E)
dΓB
hs(B)

= e
SB (EC−HS )

KB .

Since the bath is very large, we can expand,

SB(EC − HS) ∼ SB(EC) − ∂SB
∂E

HS

and in view of (5.29),

SB(EC − HS) ∼ SB(EC) − HS
T

.



5.7 Canonical Distribution 85

Therefore,

dPS = Ce− HS (p,q)
KBT dΓS ≡ ρdΓS .

The new constant C will be eliminated by the normalization condition.
The canonical distribution for S, that is, for the molecule, is the dimensionless

ρ(p, q) = Ce− HS (p,q)
KBT ; we simplify the notation writing dΓ for dΓS (since B is

eliminated) with

β = 1

KBT
.

So,

ρ = e−βHS (p,q)
∫
e−βHS (p,q)dΓ

. (5.32)

The denominator is the partition function (which ensures that the integral of ρ
over Γ is 1),

Z =
∫

e−βHS (p,q)dΓ, (5.33)

which is a central quantity, as we shall see. The canonical average of any magnitude
A(p, q) is

A = 1

Z

∫
e−βHS (p,q)A(p, q)dΓ.

If the system is formed by two independent parts, HS = H1 + H2, and thus
ρ = ρ1ρ2; the parts 1 and 2 have their own canonical distribution.

5.7.1 Maxwell Distribution

In the case of a perfect gas in a volume V, the gas is C while an atom is S; then,
H = p2

2m , dΓ = d3xd3p, and so,

dP = C exp

[

− p2

2mKBT

]

d3xd3p.

Since
∫
d3x is the volume V the normalization condition is

CV
∫

exp

[

− p2

2mKBT

]

d3p = 1.

Inserting
∫ ∞
−∞ dxe−αx2

√
π
α
,
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CV = 1

(2πmKBT)3/2
⇔ Z = V (2πmKBT)3/2.

The velocity distribution is obtained by (pi → mvi) and reads as:

dP(v) =
(

m

2πKBT

)2/3

exp

(
1

2

mv2

KBT

)

dvxdvydvz.

One sets d3v = v2dv sin θdθdφ and integrates over the angles. The result is:

dP(v) = 4π

(
m

2πKBT

)2/3

exp

(
1

2

mv2

KBT

)

v2dv.

The Maxwell distribution (5.19) can be obtained by inserting 1
2mv2 = ε, with dv =√

1
2mε

dε, and the number of molecules N . Indeed, we find:

dN = N
2√
π

1

(KBT)3/2
e− ε

KBT
√

εdε.

5.7.2 Perfect Gas in the Canonical Ensemble and Boltzmann
Statistics

Above, we derived the Maxwell distribution from the canonical distribution. In this
section, we check that it arises directly fromGibb’s principle that all the micro-states
have the same probability. The perfect gas consists of N >> 1 independent material
points with total energy E in equilibrium. The gas is the thermal bath B and S is just
the molecule. The the whole system C = B + S is treated as in the microcanonical
ensemble, with fixed energy end particle number. All themicro-states of energyE are
taken to be equally likely. We work out the distribution n(ε) of the single molecule
energy ε that grants the maximum of the numberW of microstates of C. In short, the
equilibrium distribution is the one that can be realized in more ways.

Since the molecules are independent, instead of the Γ space we can work in the
single molecule μ space, with coordinates x, y, z, px, py, pz. We divide μ space in
cells of volume ΔxΔyΔzΔpxΔpyΔpz. In this way we can discretize. The energy
axis ε of a molecule will be sliced in small intervals of microscopic width Δε. The
exact method of slicing is irrelevant as long as the cells are macroscopically small
and the energy Δε is sufficiently small. However the cells must still be so large that
each cells contains several molecules.

Each way to assign the individual molecules to the cells is a microstate. We shall
treat the molecules as distinguishable as if each could be labelled. This is a natural
assumption in classical physics, thatwe shall drop inQuantumMechanics. Therefore,
classically the exchange of the μ space coordinates (p, q) of two molecules takes to
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a distinct microstate. The equilibrium distribution

ni = Nρ(εi), (5.34)

must be normalized according to

∑

i

ρ(εi) = 1. (5.35)

The probability of any distribution n1, n2, n3 . . ., with ni molecules in ith cell, is
proportional to the number ofways it can be realized, compatiblywith the restrictions

∑
ni = N

and ∑
εini = E.

The number of ways10 to choose n1 particles to put in cell 1 is

(
N
n1

)

;

when this is done, one is left with N − n1 molecules from which one can choose n2
for the second cell. A distribution n1, n2, n3, . . . is realized in

W =
(
N
n1

)(
N − n1
n2

)(
N − n1 − n2

n3

)

. . . (5.36)

different ways. Here a colossal simplification occurs, since

(
N
n1

)(
N − n1
n2

)(
N − n1 − n2

n3

)

= N !
n1!(N − n1)!

(N − n1)!
n2!(N − n1 − n2)!

(N − n1 − n2)!
n3!(N − n1 − n2 − n3)! . . . . . .

= N !
n1!n2!n3! . . . ,

and so,

W = N !
∏

r nr !
. (5.37)

10
(
N
n

)

= N !
n!(N−n)! is the number of different choices of n objects from N , regardless the order of

the selected objects.
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Since the logarithm is everywhere an increasing function of its argument, we maxi-
mize log(W ); by the Stirling formula

lnW ≈ N lnN − N︸︷︷︸−
∑

ni ln ni +
∑

ni
︸ ︷︷ ︸

= N lnN −
∑

ni ln ni. (5.38)

This is the entropy of the gas

S

KB
= lnW ≈ N lnN − N︸︷︷︸−

∑
ni ln ni +

∑
ni

︸ ︷︷ ︸
= N lnN −

∑
ni ln ni (5.39)

in terms of the (yet unknown) cell populations. According to the Lagrange method,
we impose

∂

∂nr

[
−

∑
ni ln ni − γ

∑
ni − β

∑
εini

]
= 0,

where β, γ are multipliers. We get

− ln nr − 1 − γ − βεr = 0,

that is,
nr = e−αe−βεr .

with α = 1 + γ, β = 1
KBT

. Now we can grasp better the meaning of the Boltzmann
distribution. The parameterα is fixed by (5.35). To obtain the entropy, we cast (5.34),
(5.35) into (5.39):

S

KB
= N logN − N

∑

r

ρ(εr) log(Nρ(εr)) − N
∑

r

ρ(εr) log(ρ(εr)).

The molecular distribution function reads as:

ρ(εr) = e−βεr

Z
.

The canonical entropy per molecule of the gas is:

Sm
KB

= −
cells∑

r

ρ(εr) log(ρ(εr)). (5.40)

A more general statement, valid for any system, reads as

Sm
KB

= −
∑

i

pi log(pi)), (5.41)
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where pi is the probability of finding the system in the microstate i. The reader could
wonder why the canonical entropy, which is taken as a definition in Feynman’s book
Statistical Mechanics, is different from the microcanonical result (5.28). The reason
is that in the microcanonical calculation, the system is the gas, while here, the system
is the molecule. In an isolated system, all the microstates are equally likely, pi = 1

W
and (5.41) returns S = KB log(W ). Below, we shall compute the gas entropy via the
canonical partition functions and the result will agree with Thermodynamics again.

The canonical partition function reads as:

Z =
∑

r

e−βεr , (5.42)

and the canonical mean of any quantity A is:

A = 1

Z

cells∑

r

e−βεr A(r).

Problem 15 A mini-gas of 10 molecules has 4 states (or cells) available. The cell
energies are 0, ε, 2.ε, 3.ε. The total energy is E = 14ε. Let nk denote the number of
molecules in the kth cell of energy kε. Find the most probable value of n0.

Solution 15 There are 18 possibilities. Below I report the cell occupations:
((0, 6, 4, 0), (0, 7, 2, 1), (0, 8, 0, 2), (1, 4, 5, 0),
(1, 5, 3, 1), (1, 6, 1, 2), (2, 2, 6, 0), (2, 3, 4, 1),
(2, 4, 2, 2), (2, 5, 0, 3), (3, 0, 7, 0), (3, 1, 5, 1),
(3, 2, 3, 2), (3, 3, 1, 3), (4, 0, 4, 2), (4, 1, 2, 3),
(4, 2, 0, 4), (5, 0, 1, 4)).
The maximum probability occurs for n0 = 2 and for n0 = 3.

5.7.3 Thermodynamic Magnitudes in the Canonical
Ensemble

The thermodynamical internal energy U is identified with the average energy

U = NHS ,

where the factor N arises from the sum over molecules; however U is obtained from
Z:

H = − 1

Z

∂Z

∂β
− ∂ ln(Z)

∂β
. (5.43)

The perfect gas example suggests to define the entropy per molecule
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Sm
KB

= −
cells∑

r

ρ(εr) log(ρ(εr)).

The canonical distribution (5.32) yields

Sm
KB

= −
∑

r

ρ(εr)[−βεr + log(Z)] = U

NKBT
+ log(Z). (5.44)

From (5.6) F = U − TS, the molecular free energy reads

F = −KBT ln(Z).

Moreover, combining (5.44) with (5.43), we find

Sm = − 1

T

∂

∂β
log(Z) + KB log(Z),

and since
∂

∂β
= − 1

KBβ2

∂

∂T
,

the molecular entropy is

Sm = KBT
∂

∂T
log(Z) + KB log(Z)

or, equivalently,

Sm = ∂

∂T
[KBT ln(Z)] = −

(
∂F(V,T)

∂T

)

V

, (5.45)

in accord with (5.7); recalling (5.8), it is easy to obtain the pressure

P = −
(

∂F

∂V

)

T

. (5.46)

So, from the partition function all the thermodynamic quantities are readily obtained.

Problem 16 For the monoatomic perfect gas, calculate the partition function Z , the
internal energy U , entropy S and pressure P.

Solution 16

Z = 1

h3

∫
d3pd3exp

[

− p2

2mKBT

]

= 1

h3
V (2πmKBT)

3
2 .

Hence,
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U = −N
∂

∂β
logZ = 3

2
NKBT .

From (5.44),
Sm
KB

= log

(
V (2πmKbT)

3
2

h3

)

,

up to an additive constant.

F = −KBT log(
V (2πmKBT)

3
2

h3
.

Finally, from (5.46),

P = KBT

V
.

5.7.4 Theorem of Equipartition

Consider the harmonic oscillator

H(p, q) = p2

2m
+ V (q), V (q) = 1

2
mω2q2.

Since

V (q) = 1

2
q
∂H

∂q
,

the thermal average of V at temperature T is given by

V = 1

2Z

∫
dqdpq

∂H

∂q
e−βH = 1

2Z

∫
dqdp

q

(−β)

∂

∂q
e−βH;

and by an integration by parts one finds

V = −KBT

2Z

∫
dqdp

{
∂

∂q
(qe−βH) − e−βH

}

.

This can be simplified, since H → ∞ for q → ±∞ and the first contribution
vanishes; we are left with

V = KBT

2
.

Similarly, one can obtain:

T = KBT

2
.
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The traditional statement is that for any system of oscillators, there is a contribution
KBT
2 for each degree of freedom, i.e. from each q and each p. Systems of oscillators

include the vibrations of molecules and solids and the normal modes of the electro-
magnetic field in a cavity. The failure of this theorem for the electromagnetic field is
called ultraviolet catastrophe, and it led Planck to introduce the quanta (see below).
But here, we go ahead with the classical theory.

Example: Monoatomic Perfect Gas

Since

H =
N∑

i

p2xi + p2yi + p2zi
2m

,

we rederive the internal energy is

U = 3

2
NKBT

and the specific heat at constant volume CV = ( ∂U
∂T )V = 3

2NKB. For one mole of gas,
N ∼ 6.022 ×1023 is the Avogadro number and CV = 3

2R, where R = NKB is the gas
constant. These well known results are all wrong at low temperatures: in particular,
the specific heats vanish for T → 0 for the third principle of Thermodynamics.

Example: Biatomic Gas

For biatomic molecules, if one considers only the translational degrees of freedom,
the result is CV = 3

2NKB as above. But one should add to the kinetic energy the
rotational Hamiltonian, which can be roughly represented by a rigid rotator

Hrot = 1

2I

(

P2
θ + 1

sin2 θ
P2

φ

)

.

Due to the quadratic form, Hrot adds another R per mole. This is not all. The rotator
is not rigid, therefore one should add a (roughly) harmonic potential and another
R. Experimentally, e.g., for H2, well above the boiling point of liquid Hydrogen,
CV = 3

2NKB and the only degrees of freedom that contribute are translational, while
the others are frozen. They start to contribute at higher temperatures. The explanation
is possible only in the quantum theory.

Dulong and Petit Law

Einstein modeled the vibrations of an elemental solid as an harmonic oscillator
associated to each of the N atoms. Thus, H is the sum of N oscillator terms and
classically CV = 3R. This agrees with a law by Dulong e Petit, which is about right
around room temperature. However, at low temperatures, CV drops, and this can be
understood by Quantum Mechanics. Actually, Einstein had proposed a qualitatively
correct explanation in terms of vibration quanta already in 1907 (see Chap. 25).

http://dx.doi.org/10.1007/978-3-319-71330-4_25
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Black Body and Ultraviolet Catastrophe

The spectrum, that is the dependence of energy density on frequency u(ν), was
measured through its link (5.15) with the emissive power. At each temperature, the
data show a bell-shaped u(ν) with a characteristic asymmetry that grows from 0
to a maximum and then decreases to zero more slowly at high frequencies. The
maximum shifts to a higher frequency with increasing the temperature T and the
maximum frequency is proportional to T (Wien’s law). Rayleigh and Jeans, in 1900,
treated the problem as follows. In a large cubic cavity of volume V the number of
right polarized modes of the electromagnetic field with wave vector in d3k is

dN = Vd3k

(2π)3
;

this must be multiplied by 2 to include left polarization. Integrating over the angles

of
−→
k s by

∫
Ω
d3k = 4πk2dk and setting |k| = ω

c , one finds

∫

Ω

d3k = 4πω2dω

c3
;

finally,

dN = 2
Vk2dk

π2
= V

ω2dw

π2c3
.

Eachmode is a harmonic oscillator and has energyKBT according to the equipartition
theorem. The energy per unit volume is:

u(ω)dω = KBTω2

π2c3
dω. (5.47)

This result is in excellent agreement with experiments in the region of low fre-
quencies (well below the maximum), and this represents a great success of the above
theory. Alas, when ω increases, things go so disastrously that each physicist refers
to this problem as the the ultraviolet catastrophe. The calculation of the number of
modes is simple geometry and cannot be wrong. It is the equipartition theorem that
would cause the absurd result

∫ ∞
0 u(ω)dω = ∞, and each body should emit infinite

energy. This can be traced back to the fact that the Boltzmann statistics does not apply
to the states of the field and those of energy above KBT are effectively quenched.
Again, the problem is deep and the solution requires Quantum Mechanics, which
explains in detail the law of Wien and fixes the constant of the Stefan–Boltzmann
law.
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5.8 Grand-Canonical Ensemble

In most problems, a more general ensemble is preferable. It is the Grand-canonical
Ensemble in which the system S can exchange with the bath B besides energy, even
particles. Instead of fixing the energy U = E as in the microcanonical ensemble,
we fix the temperature T as in the canonical one; instead of fixing the number N of
particles as one does in both the microcanonical and canonical scheme, one keeps the
chemical potential μ fixed. Now all N values are possible, and the G space becomes
the union of all those who describe the system with N defined. It is this monster
space that must be divided into cells. In the search for the most probable distribution,
we must to maximize W at constant N, and this requires a new Lagrange multiplier
that turns out to be μ. Ultimately, the formalism works as in the canonical scheme,
but with the Hamiltonian H(p, q) replaced with H(p, q) − μ N. Using the discrete
notation, the grand canonical partition function is

ZG =
∑

i

e−β[εi−μN].

The grand canonical average of any A becomes

A = 1

ZG

∑
e−β[εi−μN]A(i).

The internal energy is given by

U = − ∂

∂β
log ZG

in analogy with the canonical case. The only new quantity is the average number of
molecules,

N = ∂

∂μβ
logZG . (5.48)

5.8.1 Monte Carlo Methods

Many activities require a draw or the intervention of chance. Truly random numbers
can be generated experimentally, using, for example, the nuclear decay of radioactive
substances, but it is usually preferable to generate pseudo-random sequences (that
are deterministic but are started by a seed, as the clock of a computer, whose results
are practically unpredictable. The most commonly used is the one by Lehmer. One
starts by choosing three large secret integers a, b, m. Let the integer r1 be the random
seed. More random numbers are then generated by the formula
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ri + 1 = (ari + b) mod m.

That is, ri + 1 is the remainder of (ari + b)/m; in this way, the ration ri/m are
pseudo-random numbers between 0 and 1.

Apart from lotteries and some situations in which a draw is prescribed by laws, a
random number generation has important applications in Science, often dealing with
the calculation of integrals. Given a square of side a we can inscribe in it a circle of
radius a/2. Suppose one uses a random number generator to produce pairs (x, y) with
−a < x < a,−a < y < a. The dot with coordinates (x, y) is inside the circle with
probability π/4. This is actually one way to approximate π. In a one-dimensional
integral

∫ L
0 dxf (x), the error due to a finite mesh goes like ε ∼ ΔL

L . With n ∼ 1
ε
points

the integral starts to converge, unless f has narrow structures. In d dimensions, the
number of times one must compute f goes like n ∼ ε

1
d . If d = 100 and we want

ε < 1
1000 , we need 10300 computations of f . Assuming that one computation of f

takes 10−6 s, the calculation lasts about 10294 s. Comparing this figure with the age
of the universe, which is less than 1018 s, we may conclude that the waiting time is
excessive and a faster method must be sought.

Actually, the variance of theMonte Carlo method decreases like 1√
N
with increas-

ing the number N of points, regardless of d. Moreover, if one knows which regions
of the integration field contribute most, one can improve the convergence by an
importance sampling. Molecular dynamics simulations can be based on the numer-
ical solution of the equations of motion of samples of molecules; the samples are
prepared using a number of realizations of the phenomenon under study, weighted by
the probability of occurrence (the Metropolis method). In this way, one can compute
mean values of the thermodynamic potentials.

The Monte Carlo approach is also applied with success to quantum mechanical
simulations. The Car–Parrinello method is often used for this purpose. It is based on
quantum mechanical ab initio calculations using the Density Functional approach,
which is an efficient method to find the ground state density and energy in many-
electron systems. Due to its computational complexity, it is applied onmodel systems
that are much smaller than those that can be considered in classical molecular sim-
ulations. Car–Parrinello calculations have also been applied successfully to systems
of interest for biology.



Chapter 6
Special Relativity

Everyone is entitled to use their own measurements to describe
physical reality, and the descriptions of observers who are in
different inertial frames are related by simple transformation
laws. This was well understood by Galileo, but the finite speed
of light required Einstein to fit electromagnetism into the
scheme, with paradoxical and astounding consequences.

6.1 Galileo’s Ship

Galileo stated the Principle of Relativity using a series of thought experiments to be
performed inside a ship. This was revolutionary in a time dominated by Aristotelian
misconceptions, when the common wisdom was that there is an absolute rest system
and a force is needed to keep objects moving.1 The worst difficulty was that the
2000-years-old teaching of Aristotle was upheld by the Church.

It was the first time that thought experiments were introduced and their power
demonstrated, and in many ways, that was the beginning of Science in the modern
conception of the term. Galileo’s Dialogo dei Massimi Sistemi is also a masterpiece
of Italian Literature, written in the colorful but still perfectly clear Italian of 1600. He
demonstrated that no experiment conducted inside the ship without looking outside
could reveal the state ofmotion of the ship, as long as it is uniform. Letme summarize
three novel principles that were clearly demonstrated by Galileo in that work and in
other publications:

1. There are inertial frame of reference, such that a free body moves along a straight
line with constant speed once the friction is removed;

2. Given an inertial frame, all the frames that movewith constant speed in it (without
rotations) are also inertial;

3. No experiment can distinguish one inertial frame from another, and the laws of
Physics are the same for all.

1However, the times were ripe and some of the works by Giordano Bruno (1548–1600) imply
correct ideas about the relativity of motion.
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98 6 Special Relativity

Remarkably, he arrived at that without ever having access to any even approximately
inertial system (apart from a freely falling one), since the ship actually is in a field
of gravity. Let us discuss (in modern terms) the implications.

Consider two inertial references K and K′ and a material point P; let the coor-
dinates of P be −→r = (x, y, z) in K and −→r ′ = (x ′, y′, z′) in K′. If the origin of K′
travels in K with speed −→u , −→r ′ is related to −→r by

−→r ′ = −→r − −→u t. (6.1)

The time is just a parameter, the same in both references, and Newton’s equations
are trivially the same; a change of variables in the Lagrangian makes the change.
This is the Galilean Relativity. In the nineteenth century everyone believed in Clas-
sical Mechanics, but the crisis arrived with Maxwell’s equations, which predict that
light moves with velocity c. Velocity relative to what reference? For a long time, it
was thought that the privileged reference in which Maxwell’s equations hold must
be sought by seeking variations of the speed of light with direction. A celebrated
experiment used theMichelson interferometer of Fig. 6.1 but failed to find any effect.
Nowdays, interferometric experiments using laser light measure the speed of light to
a part in 109 or better, and any discrepancy would be a celebrated discovery, yet none
has been reported. So we start to discuss Einstein’s Special Relativity, which is based

C

l1

l2

B

L

S

A

O

Fig. 6.1 Scheme of the Michelson interferometer used to seek a dependence of c on the direction.
Light coming from a source S is split in O by a half-silvered mirror L making an angle of 45◦; the
rays OA and OB are reflected by mirrors that send them back to L . Here, the ray BO is split in OC
and OS, while AO is split in OS and OC. In C there is an eyepiece, and one can see the interference
between the rays SOAOC and SOBOC. Any difference of the light speed in the two arms should
produce a phase shift. No dependence on the direction was found, despite the fact that the Earth
travels at 29km/s around the Sun
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on the simple assumption that Galileo’s Relativity is not restricted to Mechanics, but
all the Laws of Physics must hold in the same form in any inertial system. In General
Relativity, all reference systems are included, but this is deferred to Chap.8.

6.2 From Thought Experiments to the Lorentz
Transformation

Einstein2 started from the idea that the Maxwell equations were right and the laws of
Electromagnetism must hold in any inertial system. In particular, any measurement
of c yields the same c, with no dependence on the speed of the source of the light
and no privileged reference system. Einstein in his Special Relativity Principle made
the stronger statement that all the laws of Physics must have the same form in all
inertial reference systems. This was in line with Galileo, but the Principle of General
Relativity states that all the laws of Physics must have the same form in all reference
frames, including the accelerated ones. In this chapter we develop the special theory.

An event, like the emission or the absorption of a light signal at some point in
some instant, is something real, something thatwill receive different space-time coor-
dinates by different observers, but is something objective in itself. All phenomena
consist of a succession of events, each characterized in a given frame by 4 coor-
dinates (

−→x , t). We must give precise meanings to these coordinates. We need to
examine critically the physical (i.e., operational) meaning of the notions of space
separation and time interval between two events. The theory must refer to real facts
and measurable quantities that likewise will be transformable from one reference to
the other. As we shall see shortly, all such objects will be described mathematically
as tensors.

Meters, Clocks and Frames

By a meter, one can measure the distance between two points provided that they are
fixed; a clock measures the time between two events occurring in proximity to the
clock. For the rest, an observer is assumed to set a Cartesian reference and to be able
to set meters and clocks wherever they are needed. Moreover all the clocks must be
synchronized. This can be achieved by sending a signal from the origin; each clock
is set at the time t = r

c , where r is the distance from the origin. Then, the observer is
ready to measure the space-time coordinates (x, y, z, t) of any event. The length of
moving rod is measured as the distance between two simultaneous events in which
the ends are observed at the same t .

Some quantities are invariant in a trivial way since they are defined in terms of
measurements done in special reference systems. A stationary rod can be measured

2Albert Einstein (Ulm 1879 - Princeton 1955) is so famous that it is hardly necessary to mention
his merits. Definitely, the most important physicist since the time of Newton, besides inventing and
developing Special andGeneral Relativity he gave a formidable contribution toQuantumMechanics
as well. Being of Jewish origin, he was forced to flee from Germany already in 1933. He spent the
rest of his life in Princeton (USA).

http://dx.doi.org/10.1007/978-3-319-71330-4_8
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OS

OT

xS xT

zS zT

yTyS

Fig. 6.2 The thought experiments comparing the results of measurements performed on the train
with those performed in the station. The train referenceKT (OT xT yT zT ) travels with speed u along
the x axis relative to the station reference KS(OSxS ySzS); the train crosses the station at time
tT = tS = 0

using a meter; such is a proper length, since all observers rely on the measurement
done in a particular reference. Likewise, when two events in a given system occur at
the same point, the time separation is a proper time. In the same way, the rest mass
of a body is measured in a reference where it is motionless.

Wewish to give ameaning to the length ofmoving rods (which cannot bemeasured
by simply using a meter) and to the time interval between events that occur at distant
locations (although a clock is not enough in this case). Themeaning of such quantities
is fully defined when we agree on the way in which they can be measured (Fig. 6.2).

Instead of the ship used by Galileo, we shall use the example of a train that
moves with constant speed −→u relative to a station. The train represents the reference
(xT , yT , xT , tT ), and the station (xS, yS, zS, tS).

The train driver and the station manager agree to make some measurements and
compare the results. They agree on the relative velocity, although each of them
pretends to be motionless while the other is moving. Often they disagree on the
results of the measurements. Each observer will interpret the experiments based
solely on his own measurements. The relation between the results of both observers
is fixed by the Principle of Relativity. The station manager can measure the distance
between the rods of the rail using a meter. This is a proper length for him. But the
train driver is also able to do the same, with his own meter, because although the iron
of the rods is moving, the rods always appear to be the same for him. The conclusion
is that the lengths in transverse directions (orthogonal to the velocity) are the same
for both.

Relativity of Simultaneity

The train driver switches a lamp at O and measures the time the light takes to reach
mirrors A and B placed on the train at equal distances from O. To do so, he fixes a
clock close to each mirror. The train driver finds that the light hits both mirrors at the
same time (Fig. 6.3). The two hits are simultaneous events, taking place at different
places but at the same time.
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Station manager

OS

A B

u

Fig. 6.3 Experiment to show the Relativity of Simultaneity

The line AOB is parallel to the velocity of the train and B is ahead. If the station
manager wants to measure the arrival times at A and B, the experimental set-up must
include two clocks fixed to the ground and close to the mirrors A and B at the times
when each receives the light, since the clocks must be in the reference of the station.
This arrangement is more complicated than the measurement on the train, but can
be done. He finds that the light hits A first. This is in line with the fact that the speed
of light is c, since during the propagation of the light, A approaches the point from
which the light was emitted while B goes farther. Who is right? Both! In fact, an
experiment is always right! Moreover, the simultaneity becomes absolute if the A-B
distance vanishes. Finally, if the train driver sets mirrors at the same distance from
O in a direction orthogonal to the rail, then the station manager agrees with him
that the light reaches both mirrors at the same time; for both observers, the setup is
symmetrical.

Experiment on the Relativity of Time

The train driver installs a lamp fixed to the ceiling at height h over the ground. When
he switches the light on, how long does it take before it reaches the ground?

tT = h

c
,

of course. According to the station manager, however, the light must cover the dis-
tance

√
h2 + (uts)2, where u is the speed of the train; hence, the time is given by

ts =
√

h2+(uts )2

c . This implies

ts = h

c

1
√
1 − (

u
c

)2
. (6.2)
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Fig. 6.4 Arrangement of the
thought experiment on the
relativity of lengths

lamp

light 
detector

O

B

A

Station

For the station manager, the time is longer, because the distance covered by the light
is longer. Actually, the time measured by the train driver is the shortest possible. It
is a proper time, measured solely by using clocks.

Relativity of Lengths

In the next experiment (Fig. 6.4) the train driver puts a lamp, a light detector and a
clock in a proper position, where he sets the origin of the coordinates on the train, a
mirror A with a detector and a clock at a distance L from the lamp along the x axis
parallel to the rail and a second mirror B with a detector and a clock at a distance L
from the lamp along the y axis. At time t = 0, the lamp emits a flash of light; the
light reaches both mirrors simultaneously at time t1 = L

c and both reflected signals
return to D0 at time t2 = 2L

c . The simultaneity of the two returns to the origin is
absolute. The experiment can be arranged such that the first flash starts from the
origin at time 0 also in the reference of the station. The reflection from A has space-
time coordinates (xT , yT , zT , tT ) with tT = (l, 0, 0, L

c ) and the reflection from B
coordinates (0, L , 0, L

c ); at time (tOBO)T = (tO AO)T = 2 L
c , the two flashes return

simultaneously in O. All observers must agree on the simultaneity, since both events
take place at the same point.

The station manager agrees that mirror B is at y = L since this is a transverse
length, but considers this experiment a way to measure the length of OA not by
observing O and A simultaneously but by observing them at different times. Since
OB moves with velocity u, the ray OBO becomes the two equal sides of a triangle
having as its basis the length of the distance covered by O during the time τOBO .
Letting O’ and O” denote the initial and final positions of O, O ′O ′′ = uτOBO , and
the length covered by the ray is

O ′BO ′′ = 2

√

l22 +
(uτOBO

2

)2 =
√
4l22 + (uτOBO)2.

The time measured in the reference of the station is longer, since the light makes a
longer trip; actually, τOBO = 2ly

c
1√

1− u2

c2

, but this is just the time dilation (6.2) noted

above. On the other hand, the station manager cannot agree on the length of OA.
Let us find LS = LOA in the reference of the station. During the time τOA of the
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OA trip, the mirror A initially at LOA has moved forward by a distance uτOA. The
actual distance covered is LOA + uτOA. Since

LOA+uτOA
τOA

= c, τOA = L
c−u . Similarly,

the reverse trip takes the time τAO = L
c+u . To sum up, the time taken to go to A and

back is

τOAO = 2L

c

1

1 − u2
c2

.

The trip along x should take longer if the distance were the same. Since it is an
absolute fact that τOAO = τOBO , it follows that

LS = L

√

1 − u2

c2
. (6.3)

The proper length (measured by a meter at rest) is the longest. A shortening by 1%
requires u = 0.15c, and the effect is too small to be noted in everyday life. Of course,
the descriptions of both observers are equally right.

Note that the shortening of moving bars and the time dilation are real effects.
Such are the results of any measurement. The time dilation

τ = τ0√
1 − u2

c2

.

where τ represents a proper time, is the reason why a relativistic muon lives much
longer in the laboratory than in the rest system.

But one should not think that “in reality the experiment of the train driver lasts
2 L

c and it appears to longer to the station manager.” There is no privileged reference,
and the duration is really longer in the station; for instance, the station manager has
a longer time to intervene in the experiment.

The station manager sees the clock in the train showing the time τ0 while the
station clock shows τ , and concludes that the train clock runs slow. Many people are
tempted to think that the train driver then must see that the station clock runs too fast.
By the principle of Relativity the train driver must see the station clock going slow.
He says: I am motionless, while the station runs with a speed −u, so there is a time

dilation by a factor of
√
1 − u2

c2 . Is that contradictory? Not at all. Both observers in 1

second can see what the other does in
√
1 − u2

c2 seconds.
It is time to define the often-used symbol

γ = 1
√
1 − u2

c2

(6.4)

and express the time dilation by τ = τ0γ.

It is common practice also to introduce also the symbol β = u
c .
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The Famous Twin Paradox

Identical twins, Anthony and Bartholomew, were born in an inertial system S.
Bartholomew starts at time t1 on a spacecraft, reaches a star 12 light years away
traveling at 0.6c and soon returns home with the same speed. Anthony stays at home
and celebrates the return of his brother at time t2 after t2 − t1 = 2× 12

0.6 = 40 years.

Meanwhile Bartholomew is aged t ′2 − t1 prime = ∫ t2
t1
dt
√
1 − (0.6)2 = 40× 0.8 =

32 years, and is younger than his twin.
Bartholomew says: I never traveled, it was Anthony with all the Earth who has

taken a curved path with speed 0.6c. Also, during the trip, I have often observed
that terrestrial clocks were slow. Really, then I would have expected to find Anthony
younger than myself. This is the paradox. The resolution is that Bartholomew must
have felt inertial forces during acceleration at the start, when he bent to return home
and during the braking at arrival. So he has no right to consider himself stationary
in an inertial system. The frame of Antony, instead, was inertial (or rather, almost
inertial, because of gravity).

This experiment was conducted in 1972 comparing two Cesium clocks with each
other, one of which had toured the world in an airplane. Despite the smallness of the
velocity compared to c, the relativistic effect was found as Einstein had predicted.

Relativity of Synchronization

Two clocks at rest in the same inertial reference can be synchronized in the following
way. The distance L is a proper distance and ismeasured by using ameter, after which
one of the clocks, say clock A, emits a signal at time tA and the other is set at time
tA + L

c when the signal arrives. The observers in different inertial systems, however,
do not agree that the clocks are synchronized. An observerwho travels on a spacecraft
from A to B with speed u relative to the clocks and is at A at time tA finds that the
distance is actually L

γ
, so he reaches B at the time tA + L

uγ
; this is his proper time.

Instead, clock B indicates tA + L
u . So, in the system of the spacecraft the clocks are

not synchronized.3 The synchronization is relative to the reference.

The Lorentz Transformation

We were able to deduce some of the most characteristic effects of Special Relativity
through thought experiments, using only the fact that c is the same in all the inertial
systems. To make progress, we must derive the Lorentz transformation. This can be
done in a formal, abstract way, but we are ready to determine the result very simply
through a new thought experiment, again with the help of the station manager and the
train driver. We arrange that their origins OS and OT coincide at time tS = tT = 0.
The station manager prepares a traffic light (which is fixed in the station reference

3If the astronaut is unaware of Relativity, he will find a still stronger disagreement. He notes that the
clocks in the Earth system go slow by a factor of 1

γ ; so, if he keeps the length
L
γ that he measures as

the true length, then he expects that on the Earth, the elapsed time should be L
uγ2

, while in reality

it is L
u , as we know.
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KS ) at position xS along the rail; a timer turns the light on at some station time tS.
This is an event E with coordinates (xS, tS).

In the reference KT running at speed u, it is observed that the event E has coor-
dinates (x (E)

T , y(E)
T , z(E)

T , t (E)
T ). As we know, the y and z coordinates are the same for

both references and we can forget about them. The train driver measures the distance
(OSE)T of E from the station at in OS . The distance along the x axis is of E from OT

is just x (E)
T . In order to find the distance from OS , he adds the distance OSOT = utT

from the station, still measured on the train by a meter and a clock; the result is
evidently

(OSE)T = x (E)
T + ut (E)

T .

Instead, the station manager measures xS = (OSE)S by a meter, as a proper length.
Then, taking into account the relativistic contraction,

(OSE)T = xS

√

1 −
(u
c

)2 ≡ xS
γ

;

therefore, (understanding (E)),

xS = γ[xT + utT ]. (6.5)

By the principle of Relativity, it follows that

xT = xS − utS√
1 − u2

c2

≡ γ[xS − utS]. (6.6)

Eliminating xT from Eqs. (10.14) and (6.6), one obtains xS = γ2(xs − utS) + γutT ;
but 1− γ2 = −β2γ2. In this way one can find tT in terms of measurements done by
the station manager:

tT = γ[tS − u

c2
xS]. (6.7)

Having completed the Lorentz transformation, (6.6) and (6.7) we realize that it is
symmetric in x and ct . The Galileo transformation (6.1) is the limit for c → ∞.

The inverse transformation is

xS = γ [xT + utT ] , ctS = γ
[
ctT + uxT

c

]
. (6.8)

with yS = yT , zS = zT .Usually, one replaces the timewith a zeroth space dimension
x0 = ct and the velocity by the pure number β = u

c ; then the transformation becomes

{
xT = γ(xS − βx0S),
x0T = γ(x0S − βxS),

(6.9)

http://dx.doi.org/10.1007/978-3-319-71330-4_10
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still with yT = yS and zT = zS. More generally, the velocity is not parallel to the
position vector (that, is, the station is not along the railway). Thenwemay decompose
the position vector on the train by rT = r⊥ + r‖ and the transformation becomes

r S = (r⊥)T + γ((r‖)T + vtT )

ctS = γ
(
ctT + rT .u

c

)
;

{
r S = (r⊥)T + γ((r‖)T + vtT ),

ctS = γ
(
ctT + rT .u

c

) ; (6.10)

the inverse transformation is done by exchanging the frames and reversing the
velocity.

Check that the Lorentz Transformation Yields the Contraction

The Lorentz transformation leads to the phenomenon of the Lorentz contraction,
whereby a bar moving parallel to its length is shorter than its rest length. Suppose
the station manager wishes to measure the length of a bar on the train parallel to the
velocity of the train. The train driver can measure L using a meter. If one uses (6.8)
for the ends of the bar setting the same tT for both, the result is that the bar length
increases by a factor γ. This is wrong, because the positions of both ends A and B
must be taken simultaneously in the station, not in the train. In order to find the correct
condition, we apply (6.9) to both ends of the bar, then write the difference, ΔxT =
γΔxS−βΔx0S,Δx0T = γ(ΔxS−Δx0S; nowwe setΔx0S = 0. SinceΔxS = γΔxS ,

one finds that LT = γLS. This is the contraction x (S)
B − x (S)

A = L
√
1 − u2

c2 .

Problem 17 The space-time coordinates of two events as measured by an observer
O are x1 = 6 ∗ 104 m, y1 = z1 = 0, t1 = 2 ∗ 10−4 s, x2 = 12 ∗ 104 m, y2 = z2 =
0, t2 = 1 ∗ 10−4 s. The observer O ′ travels with a speed v relative to O along the x
axis, and finds that the two events are simultaneous. Find v using c = 3 × 108 m

s .

Solution 17 Since ct1 − u
c x1 = ct2 − u

c x2, one finds that
v
c = − 1

2 .

Problem 18 The rocket O ′ travels with speed v relative to a space station O . The
astronaut looks at the station through a 4m porthole and says that the size of the
porthole is the same as the size of the window in the station. The station manager
using a meter finds that the window is 5m long. Evaluate v.

Solution 18 From 5 = 4γ one finds v
c = 3

5 .
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6.2.1 Relativistic Addition of Velocities

The train driver observes a body moving with a speed

W = dxT
dtT

.

For the station manager, the speed is V = dx
dt , where dx = γ[dxT + udtT ], cdt =

γ[ uc dxT + cdtT ]. So,
V = W + u

1 + uW
c2

.

For W and u less than c, V is always < c.

Problem 19 A rocket R flies away from Earth E along a straight line, while a UFO
is seen from E and from R. Both objects proceed in the same direction. An observer
on E finds that the UFO is going at 0.5c, while the pilot of the rocket finds that it
goes at −0.5c. What is the speed of R relative to E?

Solution 19 v
c = 0.8.

Problem 20 In the reference (xS, tS), the station manager sees a train and a rocket
travelling in the same direction (say, the x direction), and finds that the speed of the
train is u. The train driver in his reference (xT , tT ) finds that the speed of the rocket is
v. Write the Lorentz transformations from the station to the train and from the train to
the rocket. Then, eliminating (xT , tT ) obtain the transformation from the station to
the rocket. Show that this is of the Lorentz form and verify the theorem of the sum
of velocities.

Solution 20 The required transformation reads as:

xS = γ(u)γ(v)[(1 + uv)xR + (u + v)tR], tS = γ(u)γ(v)[(1 + uv)tR + (u + v)xR].

This is a Lorentz transformation provided that γ(u)γ(v)(1+ uv) = γ(w) = 1√
1−w2 ,

where w is the speed of the rocket in the reference of the station. Solving, one finds
that w = u+v

1+uv
.

6.3 The Geometry of Special Relativity: Minkowsky
Chronotope

TheLorentz transformationmixes time and space coordinates. The transverse lengths
are conserved, but the lengths along the velocity are not, so distances depend on the
reference. However,
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c2t2T − x2T = c2t2 − 2uxt + u2x2

c2

1 − u2
c2

− x2 − 2uxt + u2t2

1 − u2
c2

= c2t2 − x2.

The invariant quantity is the interval s, defined4 by its square

s2 = r2 − c2t2. (6.11)

The interval between two events, unlike a distance in a four-dimensional Euclidean
space R

4, can be positive, zero or negative; a vanishing interval s2 = 0 is called
light-like, because the light can reach one from the other. When s2 < 0, the interval
is time-like and imaginary, while if s2 > 0 the interval is space-like. Space-time
is a four-dimensional space, the Chronotope, whose coordinates x0 = ct, x1 =
x, x2 = y, x3 = z are lengths. A point in the Chronotope is called an event. In a
four-dimensional Cartesian space R

4, any linear transformation that leaves square
distances

∑4
i=1 x

2
i invariant is a rotation (improper, if it involves a reflection). In the

Chronotope instead we can make Lorentz transformations with invariant s2. Such
a space is called pseudo-Euclidean. In R

4, when the distance between two points
vanishes, the two points coincide, while a light-like interval means that a signal can
travel from one event to the other.

We can keep the Euclidean sum of the squares formula if we are ready to use the
formal trick of replacing x0 with x4 = i x0 = ict. The Minkowsky Chronotope is the
pseudo-Euclidean space where a point has coordinates:

x1 = x, x2 = y, x3 = z, x4 = ict.

The transformation becomes
⎧
⎪⎪⎨

⎪⎪⎩

x ′
1 = γ(x1 + iβx4),
x ′
2 = x2,
x ′
3 = x3,
x ′
4 = γ(x4 − iβx1).

(6.12)

Any object v = (v1, v2, v3, v4) with 4 components that Lorentz-transform like
x1, x2, x3, x4 is called a four-vector. We shall find several physical observables that
behave as four-vectors. For instance, consider a particlemovingwith speed v = dx

dt in

some reference. The derivative dxμ

dt has 4 components, but is no four-vector, because
dt depends on the reference. One obtains a four-vector by differentiating the position
four-vector xμ with respect to invariant proper timeof the particle5 dτ = ds

c .Onefinds

the velocity four-vector vμ = δxμ

dτ
with components v1 = dx

dτ
, v2 = dy

dτ
, x3 = dz

dτ
, i dtdτ

.

4About half of the authors define it as s2 = −r2 + c2t2.
5At first sight, it may seem odd that the components xα measured in the system of the observer are
differentiated with respect to the time measured in the reference of the moving body, but actually,
cdτ = ds is an interval and does not depend on the reference system.
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This is called four-velocity. Since dt
dτ

= γ with γ = 1√
1− v2

c2

,

vμ = γ(v, c), (6.13)

where v is the Galilean speed.
The components are conventionally denoted by a Greek subscript, like xα, with

α = 1, 2, 3, 4. The latin indices, like i in xi , i = 1, 2, 3, are used for the first 3
(space) components of the four-vector.

The special transformation (6.12) can be put in the matrix form

x ′
μ =

4∑

ν=1

Λμνxν, (6.14)

with

Λ =

⎛

⎜
⎜
⎝

γ 0 0 iγβ
0 1 0 0
0 0 1 0

−iβγ 0 0 γ

⎞

⎟
⎟
⎠ ; (6.15)

the transposed matrix has β replaced by −β and is clearly Λ−1.
Next, note that the Λ matrix has the property that all its columns are orthogonal

vectors, that is, ΛμνΛμρ = δνρ. Hence,

∑

μ

x ′
μx

′
μ =

∑

μ,ν

ΛμνΛμχxνxχ =
∑

ν

xνxν .

Since such sums occur quite often, Einstein introduced the convention of under-
standing the summation symbol when the same index occur twice: so, one simply
writes s2 = xνxν .

Let vμ and wμ be four-vectors; the scalar product is vμwμ. A Lorentz transforma-
tion leads to

v′
μw

′
μ = ΛμνΛμρvμwμ,

but since ΛμνΛμρ = δνρ, we conclude that vμwμ is invariant, that is, it is a scalar.
In particular we have checked that xμxμ is the invariant square interval. From the
four-velocity one obtains the invariant

vαvα = γ2(u2 − c2) = −c2.

Differentiating again, we find vα
dvα

dτ
= 0, so the four-acceleration is orthogonal to

the four-velocity.
Other quantities of pre-relativistic Physics are recognized as scalars or four-vector

components in Relativity. Consider an electromagnetic wave. The wave length is
given by λ = cT , where T is the period; ω = ck, where k = 2π

λ
is the absolute
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value of the wave vector
−→
k , pointing along the propagation direction vers(

−→
E ∧−→

H ).
Consider any component of the electromagnetic field of awave in vacuo; its amplitude
f (ωt − −→

k · −→x ) satisfies the wave equation 1
c2

∂2

∂t2 f = ∇2 f . Any observer in any
reference canmeasure the phase difference between two space-time points by simply
counting the maxima or the zeros of f between them. The phase difference is a
relativistic invariant, because it is just amatter of counting. So,Φ = kμxμ is invariant,
and

kμ =
(−→
k , k0 = ω

c

)

is a four-vector (called the wave four-vector). Among the other relevant four vectors,
there is the current jμ = (

−→
J , i ρ

c ), where ρ is the density, and the four-potential

Aμ = (
−→
A , i φ

c ).
There are other benefits from the formal analogy between (6.12) and a rotation in

the plane, that is (leaving aside the y and z axes), in ordinary R2, where the rotation
matrix is (

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

Equation (6.12) corresponds to a rotation if we set cos(θ) = γ, sin(θ) = iβγ ⇒
tan(θ) = iβ. Setting θ = iξ, since tan(iξ) = i tanh(ξ), we are left with tanh(ξ) = β.

The special Lorentz transformation is a rotation by θ = iξ in in the x1 − x4 plane by
an imaginary angle iξ; this is such that tanh(ξ) = β. The rotation is such that

x ′
1 = x1 cosh(ξ) + i x4 sinh(ξ) x ′

4 = x4 cosh(ξ) − i x1 sinh(ξ).

The analogy with a rotation in an imaginary angle in R
4 is not tremendously

enlightening about the physical meaning, but it allows us to combine real rotations
(which are also represented by 4× 4 matrices) with special Lorentz transformations
to make general Lorentz transformations in any directions,6 which is the set of all
possible Lorentz transformations and the rules to combine two of them. Moreover,
this analogy helps us to find and classify the various kinds of invariant, which can
be built in analogy for rotations and Lorentz transformations. These are the tensors.

6.3.1 Cartesian Tensors

Chronotopic Tensors are similar to those in R
4; they represent physical quantities

that are the same for all observers. The most obvious analogy is the one with vectors
in ordinary space R

3. An electric field E at a point in space may be written in a
reference by specifying three components. Now, if one rotates the reference, the

6The infinite set of matrices so obtained are called a representation of the Lorentz Group.
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components change in such a way that E remains the same, as it should. The fact
that the components may vary with the frame does not spoil the objective character
of E, but the components must transform in a specific way in any reasonable theory.
Any physical, measurable object must be represented by a tensor. In Relativity, the
base space is the Chronotope, so the tensors are functions of space and time.

Einstein mathematically formulated the Principle of Relativity as follows:

The laws of Physics are equations between tensors.

Thus we also gain a simple criterion to relativize the physical laws: they must be
rewritten in covariant form, i.e. as equalities among tensors. One obtains laws that
are good candidates since they (1) satisfy the principle of Relativity and (2) have the
correct classical limits. In many cases this strategy is rewarding.

A relativistic invariant φ(x) is the simplest type of tensor. It is a single quantity
that may depend on the point xμ but is the same for all observers. It is also called a
scalar or a zero-tank tensor (no indices). A four-vector vμ(x),μ = 0, . . . , 4 Lorentz-
transforms like xμ and is a tensor with rank 1 and one index. Out of two four-vectors
vμ(x), wν(x) one can form an invariant φ(x) = vμ(x)wμ(x) which is their scalar
product in analogywith scalar products inR3.We have just seen that xμxμ is invariant.

Now consider the gradient of a scalar φ. It is dφ = ∂φ
dxμ

dxμ. Since φ(x)(x) is a
scalar and dxμ are the components of a vector (actually, for short, one says that dxμ is
a vector), it is clear that the gradient ∂φ

dxμ
is a four-vector obtained by differentiation.

A tensor of rank 2 wμν, (μ = 1, . . . , 4, ν = 1, . . . , 4) transforms like xμxν , that
is, like the products of two four-vectors:

w′
μν = ΛμρΛνσwρσ.

Higher rank tensors (i.e. ones with three or more indices) are defined similarly. It
is fairly obvious that the sum of two tensors of the same rank is another tensor
and so one can take linear combinations. A tensor Tik such that Tik = Tki is called a
symmetric tensor; if instead Tik = −Tki the tensor is antisymmetric7; the importance
of such properties is evident if one considers that they are preserved by Lorentz
transformations. So, for example, an antisymmetric tensor is such for all observers.
By doing the derivatives, one can easily check that the electromagnetic field is an
antisymmetric tensor:

Fμ,ν = ∂Aν

∂xμ
− ∂Aμ

∂xν
. (6.16)

7In general, one can form tensors that belong to irreducible representations of the Group of permu-
tations of the indices; such a property is invariant.
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This can be written as an antisymmetric matrix:

F =

⎛

⎜
⎜
⎝

0 Bz −By −i Ex

−Bz 0 Bx −i Ey

By −Bx 0 −i Ez

i Ex i Ey i Ez 0

⎞

⎟
⎟
⎠ . (6.17)

Thus, we know how to transform the electromagnetic fields. For the special trans-
formation (6.14), one finds:

B ′
x = Bx E ′

x = Ex

B ′
y = γ(By + βEz) E ′

y = γ(Ey − βBz)

B ′
z = γ(Bz − βEy) E ′

z = γ(Ez + βHy).

(6.18)

This is the fast way to transform the field: otherwise, one can Lorentz transform the
charge-current four vector and then re-calculate the fields usingMaxwell’s equations.
It is easy to realize that if in the unprimed system a charge is acted upon by an electric
field, in the primed system a Lorentz force also arises. From the field tensor, one can
form a third rank tensor

∂

∂xλ
Fμν = ∂2Aν

∂xλ∂xμ
− ∂2Aμ

∂xλ∂xν
.

Two more tensors can be obtained by permutation of indices:

∂

∂xμ
Fνλ = ∂2Aλ

∂xμ∂xν
− ∂2Aν

∂xμ∂xλ

and
∂

∂xν
Fλμ = ∂2Aμ

∂xν∂xλ
− ∂2Aλ

∂xν∂xμ
.

These are not independent, because their sum reads as:

∂

∂xλ
Fμν + ∂

∂xμ
Fνλ + ∂

∂xν
Fλμ = 0.

To see the meaning, let us introduce the fields: what we got is actually divB = 0.
Moreover, ∂F12

∂x4
+ ∂F24

∂x1
+ ∂F41

∂x2
= 0 is nothing but 1

c
∂
∂t B3 + ∂E2

∂x1
− ∂E1

∂x2
= 0, which is

a component of the ∇ ∧ E Maxwell equation; the other components are obtained by
permutation of the indices. The inhomogeneous Maxwell equations are rewritten as

∂Fμν

∂xν
= 4π

c
Jμ.
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We are in position to Lorentz transform the fields.Let E‖, B‖ denote the field com-
ponents parallel to the speed v and E⊥, B⊥ the orthogonal components.

Problem 21 The relativistic law of sum of speeds must result from the sum of four-
velocities. Verify that.

Solution 21 If in the train referenceKT , a material point moves with three-velocity−→v T = (v, 0, 0) the train driver finds that the four-velocity is

w(T )
μ = 1

√
1 − vT 2

c2

(−→v T , ic). (6.19)

Lorentz transforming, we find the four-vector in KS ; since the speed of the train is
u,

w
(S)
1 = w

(T )
1 − iu

c w
(T )
4√

1 − u2
c2

,

and substituting,

w
(S)
1 = 1

√
1 − vT 2

c2

1
√
1 − u2

c2

(vT + u).

For coherence with (6.19) w
(S)
1 = vS

√
1− vS2

c2

, where vS is measured in the station. So,

(vS)2

1 −
(

vS

c

)2 = ϕ, ϕ = (u + v)2
(
1 − (

u
c

)2) (
1 − (

v
c

)2) ,

which implies

(vS)2 = ϕ

1 + ϕ
c2

= (u + v)2
(
1 − (

u
c

)2) (
1 − (

v
c

)2) + (u+v)2

c2

.

The denominator is

1 −
(u
c

)2 −
(v

c

)2 +
(uv

c2

)2 +
(u
c

)2 +
(v

c

)2 + 2
uv

c2
=
(
1 + uv

c2

)2
.

Finally, one finds the known result;

vS = vT + u

1 + vT u
c2

.
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Problem 22 A spaceship travels with speed v relative to a space station. The pilot
puts a mirror A ahead and a mirror B on the tail at a distance AB = 2l0; a light
source S in the middle emits a signal that hits A and B simultaneously after a time τ0
measured on the clock of the spaceship. An observer in the space station finds that
the signal reaches B first and then A after a time τ0. Find the speed of the space ship.

Solution 22 In the station, the space ship is long l = l0γ; the time to reach A is
τA = l

c−v
, while the time to reach B is τA = l

c+v
; So Δt = 2 l0

c
u√

c2−u2
must be

equated to l0
c . So one finds that v

c = 1√
5
.

6.3.2 Action of the Free Field

The Lagrangian of the field can be taken to be proportional to F2
μν ; it is usuallywritten

in the form

L = i

4πc

(
∂Aν

∂xμ
− ∂Aμ

∂xν

)(
∂Aν

∂xμ
− ∂Aμ

∂xν

)
. (6.20)

Of course, the factor i
4πc is arbitrary. The Lagrange equations are

∂L

∂Aμ
= ∂

∂xν

∂L

∂
(

∂Aμ

∂xν

) .

One finds that

∂

∂xν

(
∂Aν

∂xμ
− ∂Aμ

∂xν

)
= ∂

∂xν
Fμν = 0 ⇔ divB = 0, rot E + 1

c

∂B

∂t
= 0.

6.3.3 Doppler–Fizeau Effect and Aberration of Light

Let us conduct a new thought experiment, with the help of the usual train running
along the x axis with velocity u. The station is replaced by a monochromatic light
source that emits a plane electromagnetic wave with pulsation ωS = 2πνS and wave
vector

−→
k S . The index S stands for source. The modulus of

−→
k S is kS = ωS

c and the
direction makes an angle θS with the x axis, therefore the component along −→u is

(kS)‖ = (
−→
k S)x = kS cos θS = ωS

c
cos θS,
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Fig. 6.5 Top Left: train away from source, θS < 0; Top right: train towards source, θS > π; bottom
left: stellar aberration; bottom right: θT versus θS for β = 0.1 (exaggerated)

while the vertical component is

(kS)⊥ = kS sin θS = ωS

c
sin θS.

One can see in Fig. 6.5 that when the train moves away from the source, θS is small,
and, and when the train approaches the source, θS is around π.

In the reference of the train, the driver observes an electromagnetic wave, but we
must find out which wave it is. Let us say, it has some angular frequency ωT ; its wave
vector has some module kT = ωT

c , and it makes some angle θT with the x axis, and
therefore its components are:

(kT )‖ = (
−→
k T )x = ωT

c
cos θT , (kT )⊥ = ωT

c
sin θT .

The train driver draws a line, makes two marks on it and -at least in principle-
he can count the nodes (points with vanishing field) of the wave between marks
at a given instant. The important remark is that the number of nodes between two
marks cannot depend on the reference. Therefore, the phase Φ = k.r − ωt must
be invariant. Since xμ is a four-vector, and is involved, the phase must be the scalar
product with another four-vector, which generalises the pre-relativistic wave vector.
This is evidently Therefore,

kμ =
(−→
k , k0 = ω

c

)
.

The Lorentz transformation written in real form (6.9), is

⎧
⎨

⎩

(kT )‖ = γ
[
(kS)‖ − β(kS)0

] =⇒ ωT cos θT = γωS [cos θS − β] ,
(kT )⊥ = (kS)⊥ =⇒ ωT sin θT = ωS sin θS,

(
−→
k T )0 = γ((kS)0 − β(kS)‖) =⇒ ωT = γωS [1 − β cos θS] .

(6.21)
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The last of (6.21) gives the frequency on the train in terms of the angle in the
station; while the first two yield the frequency on the train

tan(θT ) = sin(θS)

γ(cos(θS) − β)
. (6.22)

By plugging cos(θS) derived from the first and simplifying, one obtains the formula
found by Einstein in 1905:

ωT = ωS

γ[1 + β cos(θT )] . (6.23)

The source is seen in a direction that depends on the speed of the observer relative
to the source. This phenomenon is known as the aberration of the light and has been
well known to the astronomers since the eighteenth century. It was discovered by
the Englishman James Bradley (1693–1762), later the Royal Astronomer. It is the
apparent motion of all the stars due to the revolution of the Earth around the sun.
The effect changes the apparent position of stars by 20 arc-seconds when the line
of sight is perpendicular to the Earth’s orbit, and is a direct evidence that our Planet
rotates around the Sun.

The trend is illustrated in Fig. 6.5 bottom left; the reason is clear from the fact
that the angle receives a negative correction illustrated in Fig. 6.5 bottom right, even
if the parameter β = 0.1 used for illustration is too large.

For θS = 0, the observer moves away from the source and experiences the longi-
tudinal Doppler effect8:

ωT = ωS

√
1 − u

c

1 + u
c

. (6.24)

If the source is approaching, there is a blue shift which is a first-order effect for small
speeds. Qualitatively, this is similar to the behavior of sound waves that reach us
from moving objects. This effect allows for precise measurement of speeds and is of
paramount importance in Astrophysics. Edwin Hubble, in 1929, discovered that the
light from all the far Galaxies reddens with increasing distance and concluded that
the Universe is expanding (see Sect. 8.12). The Doppler effect also allows the police
to measure the speed of cars and fine the drivers who exceed the limits.

Equation (6.21) also shows that for cos(θS) = β, θT = π
2 , and

ωT = γωS
[
1 − β2

] = ωS

√
1 − β2.

8Here u is the speed of the train; more usually the law is written in terms of the speed −u of the
source relative to the observer.

http://dx.doi.org/10.1007/978-3-319-71330-4_8
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This transverse Doppler effect is second-order in β, and is not predicted by the
pre-relativistic Physics. It can be understood as being due to the relativistic time
dilation.

Accurate experimental verifications have been done using the recoilless emission
discovered by Rudolf Mössbauer. The Mössbauer effect is a solid state effect. Typi-
cally, a free 57Fe atom makes a nuclear decay within a crystal emitting a very narrow
γ ray with a recoil energy of about 10−1 eV. The vibrations in solids are quantized
harmonic oscillators, called phonons. Since the oscillator state with the recoiling
atom is not orthogonal to the ground state, there is a probability that a nuclear decay
emits a γ ray without exciting the oscillator at all. In this case, the whole crystal
recoils. Since the crystal is macroscopic, in practice a recoil-less emission occurs.
This effect allows to work with very well defined frequencies, since it avoids the
recoil that is an important source of broadening. Doppler shifts due to velocities of
the order of 1cm per second can be measured.9

6.3.4 Relativistic Mechanics

Consider a free point mass with the action S = ∫ t2
t1

1
2mv2dt , where m is the mass.

This is good in Newtonian mechanics, but does not comply with the criterion for a
relativistic law, since it is not written in terms of real things like events and tensors.
However, the principle of least action δS = 0 lends itself to a relativistically covariant
reformulation. The law of motion must be invariant, so the simplest possibility is that
the action S be a scalar. First, we replace the absolute times t2 and t2 with the proper
times of two events a and b. So,

S =
∫ τb

τa

dτ × something.

The integrandmust have the dimensions of an energy. The only scalar that charac-
terizes the particle is the rest mass m0, which is the mass measured in the rest frame
of the particle; besides, we need a velocity to make an energy. Any velocity would
be OK, since we know that if the action is multiplied by a constant, the equations
of motion are not affected. Since c is one of the fundamental constants, we take the
Lagrangian L = −m0c2.

In the rest frame of the point mass, the differential of the interval is ds = cdτ .
The observer who sees the particle moving with velocity v finds that ds2 = c2dt2 −
dx2 − dy2 − dz2, and dτ = dt

√
1 − v2

c2 . So,

S = −m0c
2
∫ tb

ta

√

1 −
(v

c

)2
dt =

∫ tb

ta

dt L(q, q̇, t);

9For the experimental confirmation of the transverse Doppler effect, see Hay et al., Phys. Rev.
Letters 4, 165 (1960).



118 6 Special Relativity

the constant −m0c2 is a good choice, since for v � c, L gives back the non-
relativistic kinetic energy: L ≈ m0c2 + 1

2m0v
2 + · · · . The constant m0c2 does not

change the equations of motion and can be ignored. The momentum conjugated with−→x is
−→p = ∂L

∂−→v = m0
−→v

√
1 − (

v
c

)2
≡ m−→v .

This reduces10 to the Galilean momentum for small v. The change is that the mass
m is velocity-dependent: m ≈ m0 for v → 0, but m diverges for v → c, So, c
is a limiting velocity, unattainable for massive bodies. Nobody can overtake a light
ray and look back to see what it looks like! The energy is given by the Hamiltonian
E = −→p · −→v − L . One finds

E = m0c2√
1 − (

v
c

)2
≡ mc2. (6.25)

This formula is so famous that everyone knows it. It says that a fixedmassm has a rest

energy E0 = m0c2,
while a moving mass also has kinetic energy; at low speed, this is

E ≈ m0c2 + 1
2m0v

2 + · · ·

which coincides with the Galilean expression plus the rest energy. Like the momen-
tum, the energy E blows up at c. But all that is really striking only when it is properly
understood, because in Newtonian Mechanics, the origin of energy is arbitrary and
only energy differences are meaningful. The real point is that in Relativity theory,
there is no such arbitrariness. Indeed, the momentum

pμ = m0wμ = m0√
1 − (

v
c

)2
(v, ic) =

(
−→p , i

E

c

)

is a four-vector, and this property would be broken if one could add a constant to
the fourth component. This implies that we can know the energy content of a system
from its rest mass, and conversely, any amount of energy has inertia. That was a real
change of paradigm in Science. The consequence is that the mass of bound systems
(like, e.g., nuclei) is less than the sum of the masses of the constituents. For instance,
this is observed in nuclides, since in the nucleo-synthesis, some energy was emitted
as γ rays.

10Using 1√
1−x2

≈ 1 + x2
2 + 3x4

8 .
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These findings are readily extended to deal with a charged particle in a field. The
pre-relativistic Lagrangian is shown in (2.88). Once we modify the kinetic energy
term as shown above, we get:

L(
−→r ,−→v , t) = −m0c

2

√

1 − v2

c2
− qφ + q−→v · −→

A (
−→r , t). (6.26)

Now one can derive the relativistic equations of motion of a charge in a field

d

dt
−→p = −→

F ,
−→p = m0γ

−→v , (6.27)

where
−→
F is the Lorentz force (2.85).

Four-Force

Equation (6.27) must be put into a manifestly covariant form. The derivative must be
d
dτ
, with respect to the proper time τ , and the force must become a four-vector. The

equations of Dynamics become:

d

dτ
pμ = fμ. (6.28)

Multiplying by vμ = 1√
1−( v

c )2
(−→v , ic) and recalling that vμvμ = −c2, one finds

m0vμ
d

dτ
vμ = m0

2

d

dτ
(vμvμ) = 0 = fμvμ.

So, −→
f · −→v + i f4c = 0,

f4 = i
−→
f · −→v
c

.

Since dt = γdτ and d
dτ

= γ d
dt , the space part of (6.28) becomes

d

dτ
−→p = 1

√
1 − (

v
c

)2
d

dt
−→p = −→

f = 1
√
1 − (

v
c

)2
−→
F ,

and this relates the modified three-vector
−→
f with the Lorentz force

−→
F (2.85).

Moreover,

f4 = i

c

−→
F · −→v

√
1 − (

v
c

)2
,

http://dx.doi.org/10.1007/978-3-319-71330-4_2
http://dx.doi.org/10.1007/978-3-319-71330-4_2
http://dx.doi.org/10.1007/978-3-319-71330-4_2
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and the four-force is fμ = (
−→
F√

1−( v
c )2

, i
c

−→
F ·−→v√
1−( v

c )2
). The fourth component of the equa-

tions of motion is

d

dt

m0c2√
1 − (

v
c

)2
= −→

F · −→v .

In this way, the equations of Dynamics are relativized.

6.3.5 Field Lagrangian and Hamiltonian;
Energy-Momentum Tensor

Consider a fluid having proper density (that is, measured in the rest reference) ρ0(x)
in the chronotopic point x and four-velocity uμ (also a function of space-time) with
negligible pressure. We may take the stress-energy tensor in the form

Tμν = ρ0(x)u
μuν . (6.29)

The divergence may be denoted by T μν
,μ ≡ ∂T μν

∂xμ ≡ ∂μT μν . At any rate,

T μν
,μ = ∂μ(ρ0u

μ)uν + ρ0u
μ∂μu

ν .

This can be simplified, since in the rest frame the velocity is zero and the second
term vanishes; moreover, ∂μ(ρ0uμ) = 0 by the continuity equation. Thus, T μν

,μ = 0;
in other words, the energy-momentum tensor is divergenceless.

If the fluid has proper internal energy U0 and proper pressure P0, extra contri-
butions arise to the stress-energy tensor. One can show that a more complete, still
divergenceless expression is:

Tμν = δμνP0 +
(

ρ0(x) + ρ0U0

c2
+ P0

c2

)
uμuν . (6.30)

This is a covariant way to represent the energy-matter contents of space-time
and is crucially important for General Relativity. Indeed, a stress-energy tensor is
naturally associated to any relativistic field. The formalisms of Classical Mechanics
show their full power in relativistic field theory, where the coordinates q become the
values of a field at each space-time point. At the present stage, we can stay generic
about the precise nature of φ which is simply required to be a relativistic field that
carries energy and momentum. In this section, we see how things go in the case of a
one-component field φ(x). The action is the relativistic invariant

S =
∫ t2

t1
Ldt =

∫
L(φ, ∂μφ)d4x, (6.31)
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and L is called the Lagrangian density. One can carry on the argument in analogy
with Classical Mechanics and find that the condition δS = 0 leads to the equations
of motion

∂L
∂φ

= ∂μ

(
∂L

∂(∂μφ

)
. (6.32)

The analogy is complete. In terms of the momentum density

π(x) = ∂L
∂φ̇(x)

, (6.33)

one can define a Hamiltonian

H =
∫

d3xH(x) =
∫

d3x[π(x) ˙φ(x) − L(x)], (6.34)

whereH is calledHamiltonian density.Conservation laws can be derivedmost simply
by inserting into the derivative ∂L

∂xμ
= ∂L

∂φ
∂φ
∂xμ

+ ∂L
∂(∂νφ)

∂(∂νφ)

∂xμ
= ∂L

∂φ
∂φ
∂xμ

+ ∂L
∂(∂νφ)

∂(∂μφ)

∂xν

the equation of motion ∂μ
∂L

∂(∂μφ)
= ∂L

∂φ
, getting

∂L
∂xμ

=
∑

ν

[(
∂ν

∂L
∂(∂νφ

)
∂μφ + ∂L

∂(∂νφ)
∂ν(∂μφ)

]
.

This can be rewritten as

∂L
∂xμ

=
∑

ν

∂

∂xν

[
∂L

∂(∂νφ)
∂μφ)

]
,

or
∑

ν

∂

∂xν

[
∂L

∂(∂νφ)
∂μφ) − ∂L

∂xν
δμν

]
= 0. (6.35)

We have obtained
∂νTμν = 0, (6.36)

where

Tμν = ∂ν

[
∂L

∂(∂νφ)
∂μφ

]
(6.37)

is the stress-energy tensor, a.k.a. the energy-momentum tensor. Clearly, Eq. (6.36) is
a conservation law; T00 represents the energy density and T0i the components of the
momentum density of the field.

Noether’s theorem is even more powerful in field theory and provides conserved
currents. The infinitesimal transformation analogous to the one in classicalmechanics
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φ(x) → φ(x) + αΔφ(x) (6.38)

must leave the equations of motion invariant if it has to be a symmetry. The change
it introduces in the Lagrangian density is

αΔL = ∂L
∂φ

(αΔφ) +
(

∂L
∂(∂μφ

)
∂μ(αΔφ). (6.39)

Introducing the equations of motion one can reduce this to

ΔL = ∂μ

(
∂L

∂(∂μφ

)
∂μΔφ. (6.40)

The equations of motion remain unchanged if we add a four-divergence, that gives
a contribution only on the boundary where, by assumption, δφ(x) = 0. Therefore
Noether’s theorem states that

∂μ j
μ = 0, (6.41)

where the conserved current is

jμ(x) = ∂L
∂(∂μφ)

ΔΦ − T μ. (6.42)

An important example is provided by the infinitesimal translation xμ → xμ − aμ,

that is, φ(x) → φ(x) + aμ∂μφ(x),L → L + aμ∂μL. Thus, the four-divergence is
aν∂μ(δ

μ
νL). There are four conserved currents:

T μ
ν = ∂L

∂(∂μφ)
∂νφ − Lδμ

ν . (6.43)

This is the stress-energy tensor, a.f.a the energy-momentum tensor such that∫
T 0i d3x = − ∫

π∂iφd3x is the field momentum, while
∫
T 00d3x represents the

field energy.



Chapter 7
Curvilinear Coordinates and Curved Spaces

To proceed, we must develop some mathematical tools drawn
from Differential Geometry.

Even in flat Euclidean space it may be useful to use curvilinear coordinates; for
instance, in 3d problems having central symmetry, we obtain an important sim-
plification when the line element ds2 = dx2 + dy2 + dz2 is replaced by ds2 =
dr2 + r2dθ2 + r2 sin2(θ)dφ2. In a curved space we have no other choice, because
Cartesian coordinates may exist only locally, that is, in an infinitesimal neighbor-
hood. One example is the surface of a sphere of radius R. The spherical coordinates
with r set equal to the radius R of the sphere do the job. In the latter case, we deal with
a 2d curved subspace embedded in a 3d Euclidean space. The curved coordinates are
intrinsic to the surface, and one can ignore the existence of a radial dimension.

The Minkowsky space is not general enough for our purposes. We need a Rie-
mannian space, which has a curvature. Since we live on the curved surface of a more
or less spherical planet, such ideas are not too far from common wisdom, but the
mathematical apparatus that we need is far from trivial. The relevant theory was cre-
ated by outstanding mathematicians: Karl Friederich Gauss (1777–1855), Berhard
Riemann (1826–1866), E. Christoffel (1829–1900), G. Ricci (1853–1925) and T.
Levi Civita (1873–1942). In order to introduce curvilinear coordinates, we can start
from ordinary R

2 since the extension to R
d for any larger dimension d is obtained

for free. This is a good strategy: once we have developed the formalism, it fits our
needs when working in curved spaces, where Cartesian coordinates do not exist.

InR2,we can choose an origin O and a Cartesian system such that any point may
be assigned as R = (X1, X2). The square distance from a given point R to a near
point

R + dR (7.1)

© Springer International Publishing AG, part of Springer Nature 2018
M. Cini, Elements of Classical and Quantum Physics,
UNITEXT for Physics, https://doi.org/10.1007/978-3-319-71330-4_7
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Fig. 7.1 When the
coordinate lines are not
orthogonal, the covariant
basis vectors (red) are
different from the
contravariant ones (green)
and do not have fixed length

is
ds2 = dX2

1 + dX2
2 . (7.2)

Let xi = xi (X1, X2) be curvilinear coordinates in terms of the Cartesian R =
(X1, X2). We assume that these functions are invertible, that is, xi = xi (X1, X2) ⇔
Xi = Xi (x1, x2). If x1 is varied while x2 is kept fixed,

−→
R will trace out a curve, the

x1 curve. In this way one can think of a local coordinate system at each point with
basis vectors

−→e i = ∂
−→
R

∂xi
=

(
∂X1

∂xi
,
∂X2

∂xi

)
. (7.3)

These are called covariant basis vectors; note that the component i is a subscript. Now
the infinitesimal vectorial shift (7.2) becomes, understanding the sum over repeated
indices,

ds2 = ∂R
∂xi

∂R
∂x j

dxidx j = eie j dx
idx j = gi j dx

idx j ,

where
gik = −→e i

−→e k (7.4)

is called the covariant component ik of the metric tensor. The Einstein convention
now is that repeated indices are meant to be summed if they are a subscript and a
superscript.

But there is the complication that, in general, the covariant basis vectors are not of
unit length and not orthogonal; moreover, they do not coincide with the contravariant
basis vectors which are defined by −→e i .

−→e k = δik (see Fig. 7.1).
Let us choose a point and start from it along a curve xi = xi (s); we can arrange

that s is the curvilinear distance from the starting point: ds2 = d
−→
R .d

−→
R . Then,−→

t = ∂
−→
R

∂s is the velocity, that is, is tangent to the curve and −→
t .

−→
t = 1. Note that

−→
t = ∂

−→
R

∂s
= ∂

−→
R

∂xi
∂xi

∂s
= −→e i

∂xi

∂s
(7.5)
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−→e i
−→e k

∂xi

∂s

∂xk

∂s
= 1 � ds2 = −→e i

−→e kdx
idxk . (7.6)

As anticipated above, to proceed we need tensors. Using (7.3) the metric tensor
components are:

gi j =
(

∂X1

∂xi
,
∂X2

∂xi
,
∂X3

∂xi

)
.

(
∂X1

∂x j
,
∂X2

∂x j
,
∂X3

∂x j

)

= ∂X1

∂xi
∂X1

∂x j
+ ∂X2

∂xi
∂X2

∂x j
+ ∂X3

∂xi
∂X3

∂x j

= ∂Xk

∂xi
∂Xk

∂x j
.

From gi i = −→e 2
i , the length of −→e i is |−→e i | = √

gi i . From gik = −→e i
−→e k =

|−→e i ||−→e k | cos(θik), one finds cos(θik) = gik√
gi igkk

. Any vector at the point O can be

expanded:
−→
A = Ai−→e i ; in this case, Ai are the contravariant components and bring

i as a suffix. Expanding the contravariant vectors on the covariant basis

−→e i = gik−→e k, (7.7)

where gik are the contravariant components of the metric tensor. The theory uses
scalars (i.e., functions of the point that do not depend on the coordinate system),
vectors, that may be covariant or contravariant, and tensors that can have several
high or contravariant indices and low or covariant ones. In Eq. (7.7) we succeeded to
raise the covariant index k, which is a subscript, to a contravariant index i which is
a superscript. To do so we have multiplied by the contravariant component gik and
contracted, i.e. summed over k. This turns out to be a general rule. The converse
rule allows us to lower a contravariant index k by multiplying for gik and contracting
over k; the index has become a covariant index i . The general rule for raising and
lowering indices involves the metric tensor. Each index can be raised (converting
from covariant to contravariant) or vice versa, and back. To convert the covariant
components Ai of a vector, one raises the index by setting:

Ai = gi j A j , Ai = gi j A
j . (7.8)

This process of summing over repeated high and low indices is called contraction.
A similar rule allows to raise and lower indices in tensors with any number of legs
(that is, indices): for instance, Ai

jk = g js Ais
k . To find gik, multiply by −→e l :

−→e l
−→e i = δil = gikgkl (7.9)
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Thus, the contravariant components are the elements of the matrix inverse of the
matrix of the covariant components:

{gi j } = {gi j }−1.

Note that the matrix gi j is the inverse of the gi j matrix and consequently. gij =
δij = δi, j . As noted above, the components of the contravariant tensor are denoted
by superscripts.

Ind dimensions,wemust be able to transform tonewcoordinates x ≡ (x1, . . . , xd)
from old ones x ′. The differentials transform according to

dxi = ∂xi

∂x ′ j dx
′ j ; (7.10)

the Einstein convention (that repeated indices are meant to be summed over from
1 to d if they are a subscript and a superscript) is used. dxi is a prototype con-
travariant vector, with the component labels are written as superscripts; the general
contravariant transformation rule is Ai = ∂xi

∂x ′ j A′′ j .
On the other hand, consider a quantity f (xi )which is a scalar, i.e., does not change

in the transformation of variables. The derivatives of a scalar transform according to
the covariant rule

∂ f

∂xi
= ∂ f

∂x ′ j
∂x ′ j

∂xi
. (7.11)

A set of d components Ai transforming this way are the covariant components of
a vector. Note that a superscript in the denominator is counted as a subscript. A
second-order contravariant tensor has d2 components that transform according to

Tmn = ∂xm

∂x ′i
∂xn

∂x ′ j T
′i j , (7.12)

that is, like the product of two contravariant vectors. A second-order covariant tensor
has d2 components that transform like the product of two covariant vectors,Tmn =
∂x ′i
∂xm

∂x ′ j
∂xn T

′
i j . Amixed tensor with one superscript index and one subscript index trans-

forms like the product of a covariant and a contravariant vectors, and so on. In general,
tensors may have any number of indices.

7.1 Parallel Transport, Affine Connection and Covariant
Derivative

In general, the covariant basis vectors at different point are not parallel and differ in
length; however the change of −→e i when shifting the point by an infinitesimal dx j

must be proportional to the shift. See Fig. 7.2, which presents a two-dimensional
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A

BW

W
e1

e1

e1

e2

e2

dx1

x1(s) 

Fig. 7.2 Point A corresponds to the value x1 of a coordinate line x1 = x1(s) and is the origin of a

local basis vectors e1 = dx1
ds and e2 = dx2

ds . Point B on the coordinate line corresponds to xi + dxi

and a new local basis. For a generic line, this differs from the dashed basis that would result from a
simple shift of the basis at A, since the coordinate line is not straight. The change in e1 (shown in
red) is of order dx

illustration of the parallel transport. The blue line represents a curve xi (s) and s is a
parameter. The figure shows that when a vector W (green) at A is reproduced in B,
its components undergo a change that is first-order in dx1. The difference between
the covariant basis vectors based at points that lie at infinitesimal distances is

d−→e i = Γ k
i j dx

j−→e k, (7.13)

with Γ k
i j the Christoffel symbol of the second kind, also called affine connections.

Consequently, the contravariant components of a constant vector W vary by

δWi = −Γ i
klW

kdxl . (7.14)

Note that since ∂
−→e i
∂xk = ∂

∂xk
∂
−→
R

∂xi = ∂
∂xi

∂
−→
R

∂xk = ∂
−→e k
∂xi , it holds that

Γ k
i j = Γ k

ji .

Similarly, contravariant basis vectors at different points are not parallel, but the
change of −→e i when shifting the point by dx j must be linear in the shift; when the
change is expanded on the original basis, it is of the form

d−→e i = −Γ i
jkdx

j−→e k; (7.15)

the fact that the coefficients are indeed−Γ i
jk may be verified starting from−→e i .

−→e k =
δik which implies that ∂

∂x j

−→e i .
−→e k = 0 = ( ∂

−→e i

∂x j ).
−→e k + −→e i .( ∂

−→e k
∂x j ).

The covariant components of a constant vector W vary by

δWi = Γ k
il Wkdx

l . (7.16)
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This implies that the parallel transport on a closed circuit produces a change of a
constant vector by

ΔWi =
∮

Γ k
il Wkdx

l . (7.17)

Imagine a pendulum swinging at the North Pole along the meridian of Greenwich. If
it is carefully taken to the Equator by parallel transport, it will keep swinging along
the meridian of Greenwich; now, if it is taken along the Equator to the meridian of
Rome and then taken back to the North Pole, it will be found to oscillate along the
meridian of Rome. This is clearly a consequence of the curvature of the Earth. We
shall soon find that actually Eq. (7.17) is the starting point for defining the curvature
tensor.

It easy to generalize the above discussion about parallel transport to variable
vectors.

The del operator

∇ = −→e i ∂

∂xi

is an invariant, since by contracting vectors, one obtains scalars. This feature is useful
when onewishes to differentiate tensorswhile keeping track of the tensorial character
of the results. In particular,

∇−→
A = −→e i ∂

∂xi
(A j−→e j ) = −→e i−→e j

∂A j

∂xi
+ −→e i A jΓ m

ji
−→e m

is a second-rank tensor, with components

Am
;i = ∂Am

∂xi
+ A jΓ m

ji ; (7.18)

the ; notation is used for the covariant differentiation, which takes the variation of
the basis vectors into account. This means that one takes into account the effect of
the curved coordinate lines on the differential by the substitution

d Am = ∂Am

∂xs
dxs → DAm =

(
∂Am

∂xs
+ Γ m

is A
i

)
dxs . (7.19)

For a covariant vector, the rule is:

d Am = ∂Am

∂xs
dxs → DAm =

(
∂Am

∂xs
− Γ i

ms Ai

)
dxs . (7.20)
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The rule extends to the tensors of any rank. If

T = Tik
−→e i−→e k,

∇T = Tik;l−→e i−→e k−→e l

with

Tik;l = ∂Tik
∂xl

− TmkΓ
m
ll − TimΓ m

lk . (7.21)

In addition, in agreement with the general rule for raising and lowering indices,
Γi,kl = gimΓ m

kl and Γ m
kl = gimΓm,kl . The derivatives of the metric tensor g jm =

e j .em with respect to the coordinates involve the affine connections: ∂
∂xk g jm =−→e j

∂
∂xk

−→e m + −→e m
∂

∂xk
−→e j and one finds that:

∂

∂xk
g jm = Γ

p
mkg j p + Γ

p
jkgpm .

Hence one obtains Ricci’s lemma

gik;l = 0. (7.22)

However, if the metric tensor is given, such relations can be used to obtain the
affine connections. With (k, j,m) → ( j,m, k),

∂

∂x j
gmk = Γ

p
k jgmp + Γ

p
mjgpk .

With (k, j,m) → (m, k, j), instead,

∂

∂xm
gk j = Γ

p
jmgkp + Γ

p
kmgpj .

The sum of the first two minus the third is:

∂

∂xk
g jm + ∂

∂x j
gmk − ∂

∂xm
gk j

= Γ
p
mkg j p + Γ

p
jkgpm + Γ

p
k jgmp + Γ

p
mjgpk − (Γ

p
jmgkp + Γ

p
kmgpj )

= 2gpmΓ
p
jk .

To obtain the connection, multiply by gim and sum over m:

Γ k
i j = 1

2
gim

(
∂g jm

∂xk
+ ∂gmk

∂x j
− ∂gk j

∂xm

)
. (7.23)
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For a curve xi (s),where s is a parameter like a curvilinear length, the tangent at a point
of coordinates xi has components dxi

ds , and so the tangent at a point of coordinates

xi + dxi has components dxi

ds + d2xi

ds , i = 1, d. There is an important special case to
consider, i.e., the case of geodesic.

Problem 23 Find the non-vanishing Christoffel symbol for spherical geometry
in 3d.

Solution 23

Γ 1
22 = −r, Γ 2

12 = r−1 = Γ 3
13 = Γ 3

31, Γ
1
33 = −r sin2 θ, Γ 3

23 = cot θ = Γ 3
32,

Γ 2
33 = − sin(θ) cos(θ).

7.2 Geodesics

Let us start with a simple particular case. Suppose the space is R2, and the geodesic
between two points is a straight line, which is the shortest line between any two points
A and B, and its tangent is the same at all of its points and coincides with the straight
line itself. Next, we decide to go to some set of curvilinear coordinates. Now the
images of A and B are connected by the image of the straight line, the distance AB
remains the same and the image of the straight line becomes the geodesic between
A and B. We can search for it, requiring that the tangent t be the same at xi + dxi

as in xi , except that its components change solely because of the change of the local
reference according to (7.15). The components of the tangent vector are

ti = dxi
ds

. (7.24)

dt

ds
= 0 = dti ei

ds
= dti

ds
ei + t i

dei
ds

,

and inserting dei
ds = Γ k

i j
dx j

ds ek,

0 = dti

ds
ei + t iΓ k

i j

dx j

ds
ek .

Now, reshuffling indices with k → i, i → j, j → k in the second term, we get:

0 =
(
dti

ds
+ t jΓ i

jk

dxk
ds

)
ei .
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Thus, using (7.24), we obtain the equation for the geodesic, namely,

d2xi

ds2
+ Γ i

jk

dx j

ds

dxk

ds
= 0. (7.25)

As noted above, a geodesic has another notable property: it is a length-minimizing
curve. This property remains true, and also the above relations continue to hold, even
if the base space is curved and has many dimensions. There is a pleasant and useful
trick to generate geodesics, which is also a shortcut for evaluating theΓ connections.
Consider the function

LGeo(x, ẋ) = 1

2
gmn ẋ

m ẋn, (7.26)

where the dots denote derivations with respect to s. Its dependence on coordinates
and velocities suggests that it should be treated like a Lagrangian. I am going to show
that the Euler-Lagrange equations d

ds
∂LGeo
∂ ẋ p − ∂LGeo

∂x p = 0 coincide with the geodesic
equations in covariant form. Indeed,

∂LGeo

∂ ẋ p
= 1

2
(gmnδ

m
np ẋ

n + gmnδ
n
np ẋ

m) = gpn ẋ
n

and
∂LGeo

∂x p
= 1

2
∂pgmn ẋ

m ẋn .

Thus, one finds the equations of motion

d

ds
gpn ẋ

n = 1

2
(∂pgmn)ẋ

m ẋn.

Doing the derivative,

gpn ẍ
n + ∂mgpn ẋ

m ẋn − 1

2
∂pgmn ẋ

m ẋn = 0.

Then, one symmetrizes ∂mgpn ẋm ẋn with respect to the exchange of the dummy
indices,

∂ngpm ẋ
m ẋn → 1

2
∂ngpm ẋ

m ẋn + 1

2
∂mgpn ẋ

m ẋn.

In this way, ẍm + Γmpn ẋ p ẋn = 0, which yields the geodesic equation by raising an
index.

Curvature Tensor

The difference between the components of a vector at two nearby points is

d
−→
A = Ak

; j dx
j−→e k, (7.27)
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where

Ak
; j =

(
d Ak

dx j
+ AiΓ k

i j

)
. (7.28)

A vector such that Ak
; j = 0 does not change if x j → x j + dx j , and so it undergoes

parallel transport.
TheRiemann–Christoffel curvature tensor R can be obtained as follows.By apply-

ing the Stokes theorem to (7.17), one finds that 2ΔWk = Ri
klmWiΔ f lm, where Δ f lm

is the surface element and

Rm
ikl = Γ n

il Γ
m
nk − ∂

∂xl
Γ m
ik − Γ n

ikΓ
m
nl + ∂

∂xk
Γ m
il . (7.29)

In general, for a vector A, one verifies that

Ai;k;l − Ai;l;k = Rm
ikl Am . (7.30)

A nonzero Rm
ikl implies that the space is curved; It has d4 components, where d

is the dimensionality of the space. There are many symmetry relations among them.
The Bianchi identity states that

Rm
ikl;n + Rm

ink;l + Rm
iln;k = 0. (7.31)

The Ricci tensor is obtained by the following contraction:

Rab = Rc
abc. (7.32)

One finds the symmetric tensor:

Rik = ∂Γ l
ik

∂xl
− ∂Γ l

il

∂xk
+ Γ l

ikΓ
m
lm − Γ m

il Γ l
km . (7.33)

Moreover, the curvature scalar is defined by

R = Ra
a . (7.34)

Spaces of constant curvature are of special interest. Let us consider a four-dimensional
space with Cartesian coordinates xi , i = 1 . . . 4, in which we wish to embed a thee-
dimensional constant curvature subspace. Immediately, one thinks about the 3-d sur-
face of a 4-sphere. Let the radius be a > 0. The surface is defined by

∑4
i x

2
i = a2,

and one can set up spherical coordinates in the 3-d surface with r2 = ∑3
i x

2
i . Thus,

on the surface of the hypersphere,

dx4 = − x1dx1 + x2dx2 + x3dx3√
a2 − ∑3

i x
2
i

= dr2√
a2 − r2

.
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The metric in this space is:

dl2 = dr2

1 − r2
a2

+ r2(dθ2 + sin2(θ)dφ2). (7.35)

This is an isotropic space that has a finite volume and constant curvature. It is cus-
tomary to put r = a sin(χ) with χ in the interval (0, π) in order to simplify the first
term and bring a in front of the expression; then,

dl2 = a2[dχ2 + sin2(χ)(dθ2 + sin2(θ)dφ2)]. (7.36)

There is, however, another possible 3d constant curvature hypersurface, which
is obtained by letting a to be imaginary, that is, replacing a2 with −a2 throughout.
Then, the metric becomes

dl2 = dr2

1 + r2
a2

+ r2(dθ2 + sin2(θ)dφ2). (7.37)

In this case, the first term is simplified if we put r = a sinh(χ) and we may write

dl2 = a2[dχ2 + sinh2(χ)(dθ2 + sin2(θ)dφ2)]. (7.38)



Chapter 8
Gravity

General Relativity Theory was admired by Lev Landau as the
most beautiful, many years ago. Later, a series of striking
experiments showed that it is extremely successful and far
reaching, too. Einstein expected that many predictions could not
be tested experimentally; now there is an impressive body of
evidence with practical applications in Science, and also in
everyday life. This chapter is not a substitute for a full course,
but will introduce the reader to the main concepts and to recent
developments.

8.1 Principle of Equivalence

Hidden in the Special Relativity, there are important hints that led Einstein to its
generalization. The paradox named after Paul Eherenfest dates back to 1909. He
considered a rigid cylinder rotating around its axis. By symmetry, the section of the
cylinder must remain circular, and the radius R should not be affected by the motion,
since it is always orthogonal to the velocity. But the circumference can be visualized
as a polygon with many sides, and they move parallel to the velocity v = ωR.
So, Eherenfest concluded that the length of the circumference in the laboratory

frame K should be 2πR
√
1 − v2

c2 , and this was a striking paradox. The problem
was somewhat obscured by complications concerning the elastic response of the
material constituting the cylinder, and by the practical impossibility of performing
this experiment in the laboratory. However, Einstein pointed out the weak point of
the above argument: it is not clear how Eherenfest would determine the length of the
moving circle. The thought experiment must be done correctly. For example, if the
cylinder could be measured when it is fixed and afterwards it could be set in motion;
but in this case, Special Relativity cannot tell what the effects of the acceleration
are. The safe procedure requires adopting the reference K′ which is rotating with the
cylinder. For reasons of symmetry, a circumference in K is also a circumference in
K′, but in K′ a length along the circumference is a proper length, and one canmeasure
it using small rods. An observer in the inertial system K could count them, but would
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find that they are Lorentz contracted. Therefore, the solution of the paradox1 is that
in K′ more rods are needed, and so the length is increased to 2πR√

1− v2

c2

, while in K the

length is 2πR, as it should be, according to the Euclidean geometry. The physical
difference between K and K′ is that K is inertial, while in K′, there are inertial forces.
The Euclidean rules do not apply in a curved space. A somewhat similar situation
occurs in a straight route from the North Pole to Rome then along the 41.9th parallel;
it would result that the parallel is shorter than 2π times the Rome-pole distance,
because the Earth is almost spherical, and so plane Geometry does not apply. We
met this argument already - recall Eqs. (7.17) and (7.29). This analogy suggests that
the anomalous length of the circumference is the result of a curvature of space-time,
and also of three-dimensional space, which is related to the accelerated path. Thus,
Einstein’s crucial point is that the Euclidean Geometry holds in inertial systems but
not in accelerated ones. The observer in K′ should feel inertial forces and note that
the clocks that are further from the origin run slower than those that are nearer. We
have already seen that Classical Mechanics allows us to choose any reference system
and the inertial forces are automatically generated by the Lagrangian formalism in a
simple way; therefore, the extension of the theory to include accelerated systems is a
logical necessity in the first place. The above example reveals that the inertial forces
are related to a more general geometry of space-time, and this is in line with the
well-known fact that they produce accelerations (e.g., centrifugal and Coriolis) that
are mass-independent. An elephant and a mosquito receive the same acceleration
from a rotating platform. But this mass-independence of the acceleration has another
time-honored, celebrated occurrence, namely, Gravity.

Throwing from the tower of Pisa two spheres of the same radius,2 but different
weight, Galileo allegedly demonstrated experimentally that all bodies have the same
acceleration and touch the ground together. This statement is known as the weak
equivalence principle.Aristotle had stated that the heaviermassmust arrive before the
light mass. Galileo arrived at a result that corrected a seemingly intuitive millennial
error supported by a long indisputable authority, made unquestionable by the Church.
Indeed, heguessed the result of experiments that physicistswould continue to perform
for centurieswith increasing accuracy. Eötwös reached an accuracy of 5 10−9 in 1922,
and in 2012, Lunar Laser Ranging claimed an accuracy of 10−13.

But Einstein realized that he needed a more general equivalence principle than
that. He postulated that the outcome of any non-gravitational local experiment in a
free-falling laboratory is independent of velocity and location in space. Local means
in a region where fields are uniform.3 This is the Einstein principle of equivalence.
Einstein remarked that this principle implies the complete physical equivalence of a
gravitational field and a corresponding acceleration of the reference system, and also

1A more formal derivation of this result will be found shortly.
2in order to eliminate the effects of the resistance of the air.
3The strong equivalence principle states that the outcome of any local experiment (involvingGravity
or not) in a free-falling laboratory is independent of velocity and location. This requires that the
gravitational constant G be the same at any location in space-time.

http://dx.doi.org/10.1007/978-3-319-71330-4_7
http://dx.doi.org/10.1007/978-3-319-71330-4_7
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that no local experiment can distinguish between gravitational and inertial forces; all
such forces have a geometrical nature.

The same principle is in operation on a satellite in circular orbit of radius R around
some planet or star. If at the center of the circle, there is a star of mass M , the force
felt by an Astronaut would be expected classically to be F = m v2

R − GM
R2 .By suitably

selecting v, the force F vanishes, so our Astronaut can be in free-fall. This is well
known to happen in space laboratories in orbit. Moreover, the Astronaut could note
that at smaller R, the attraction of the star prevails, while at larger R the centrifugal
force wins. Therefore, the vanishing of F is only local, and extended objects are
stretched by tidal forces. The fact remains that there is a trade-off between the field
of gravity and an accelerated reference system. The equilibrium between forces of
different origin is a familiar situation, but the striking fact is that the same situation
holds regardless of the mass of the body, since the m that enters the centrifugal term
(inertialmass) is the same as them in the second term (gravitationalmass). Therefore,
inertial and gravitational forces are essentially the same sort of thing, and we may
identify the two masses, although a priori they could be different.

We can already get interesting qualitative results through other thought experi-
ments based on the Principle of equivalence. Consider an observer in a cabin without
windows inside a spaceship; he drops a stone from a height of one meter, and finds
that it falls downwards with acceleration g, directed, say, along the negative z axis.
Suppose g is the same as the acceleration of gravity on Earth. The observer stands
normally and does not float. He concludes that the ship probably stands on the ground,
or maybe it flies like a plane, without a vertical acceleration. However, that conclu-
sion is not granted. The ship could be in deep space, where the force of gravity is
negligible, but subject to an upwards acceleration g. According to the Einstein prin-
ciple of equivalence, no experiment made inside the cabin can distinguish between
the two situations.

Now assume that a light ray with the Poynting vector along the x axis enters
horizontally from a small hole in a wall of the cabin, at z = z0. We know from
Special Relativity that in any inertial system, independent of the vertical velocity of
the cabin, the light propagates in a straight line, producing a spot on the opposite
side of the cabin, still at z = z0. If, instead, the ship were accelerated towards the
high, the beam should sag and hit the opposite wall at a spot at z < z0. In the time
it takes for the light to cross the cabin, the latter has gained speed and advanced
more than in the inertial situation. In addition, the light at the spot should be Doppler
shifted towards the blue, because the Poynting vector there should have an additional
negative component along z. But then, according to Einstein, the light falls in a
field of gravity; although it has no mass, the ray bends and changes color. These
effects are not contained in the Maxwell equations, which are implicity intended
for inertial systems. The color change has been verified in the Laboratory, but is
of special interest in Astrophysics as the gravitational red shift of the light coming
from massive compact stars. To make the argument more quantitative, we can go
back to the ship accelerated upwards with acceleration g. We set a light source at
height h with respect to the detector; during the journey of the light, which lasts a
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timeΔt ∼ h
c , the speed of the spaceship changes byΔv ∼ gh

c ; the Doppler blue shift
is Δν

ν
∼ Δv

c ∼ gh
c2 . For any material body of mass m, this ratio could be rewritten as

the ratio mgh
mc2 = mΔΦ

mc2 of the change in gravitational potential energy mgh = mΔΦ

to the rest energy. ΔΦ is the drop in gravitational potential. Here, the Principle of
Equivalence enters. In a field of gravity, Δν

ν
∼ ΔΦ

c2 . The light falling toward the star
shifts toward the blue, but the light reaching us from the star reddens.4

The ratio mΔΦ
mc2 of the gravitational energy to the rest energy is always small in

laboratory experiments; it becomes of order unity in the case of black holes. Any
mass M becomes a black hole if it is confined to a Schwarzschild radius rS = 2GM

c2 .
This is very small compared to the actual size of most objects, except collapsed stars
(see the following table).

Object mass (Kg) Radius R(m) rS
rS
R

nucleus 10−26 10−15 10−53 10−38

atom 10−26 10−10 10−53 10−43

Earth 6 1024 6 106 9 10−3 10−9

white dwarf 2 1030 107 3 103 3 10−4

neutron star 2 1030 104 3 103 3 10−1

sun 2 1030 7 108 3 103 10−6

galaxy 1041 1021 1014 10−7

But in order to achieve a coherent formulation of thePrinciple ofEquivalence, another
principle is needed.

8.2 The Principle of General Covariance and the Curved
Space-Time

In accelerated frames and/or in the presence of gravity, the space-time is no longer
flat, so wemust be able to work with curvilinear coordinates xμ,μ = 0, 1, 2, 3 and to
cope with general changes of frame to new coordinates x ′μ; the transformation needs
to be invertible and differentiable, for physical reasons, but otherwise is general. The
principle of General Covariance (also known as the principle of General Relativity)
states that the laws of physics must be the same equations for all observers, inertial
or not. Removing the inertial frames from their exclusive role in Special Relativity,
makes things much more complicated but was logically necessary. We have noted
that already the Lagrangian formulation of Classical Mechanics allows to work in
any reference, and leads to a much deeper understanding of the theory.

4Again, this implies that clock go slower in a field of gravity, as they do under the action of a
centrifugal force.
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In Special Relativity, the infinitesimal interval between two events is

ds2 = ημνdx
μdxν, (8.1)

with ημν = 0 for μ �= ν and η00 = −1, η11 = η22 = η33 = 1; this means that
the geometry is pseudo-Euclidean and the space-time is flat.5 A change of inertial
reference may be done by combining the special Lorentz transformation

x ′
0 = γ(x0 − βx1), x

′
1 = γ(x1 − βx0), x

′
2 = x2, x

′
3 = x3

with translations and rotations. We must generalize Equation (8.1) by introducing a
symmetric6 metric tensor with covariant components gμν by setting

ds2 = gμνdx
μdxν (8.2)

From dx ′λ = ∂x ′λ
∂xμ dxμ, x ′ρ = ∂x ′ρ

∂xν dxν, one can deduce how the covariant tensor
components must transform:

gμν = g′
λρ

∂x ′λ

∂xμ

∂x ′ρ

∂xν
. (8.3)

Equation (8.3) is the covariant transformation law for the components tensors
with two indices. The contravariant components (see Chap. 7) transform according
to the rule

gμν = g′λρ ∂xμ

∂x ′λ
∂xν

∂x ′ρ . (8.4)

As in Special Relativity, a central role is played by a variety of functions of the
space-time point P that remain invariant under a change of frame. Collectively,
these quantities (that may be scalars; other objects like 4-vectors and more general
objects with many components) are called tensors. Generally the tensor components
vary in such a way as to compensate for the frame change; some tensors generalize
those of Special Relativity, but new tensors are also needed.We shall use the essential
formalism summarised in the last chapter.

5I adopt the convention used by Landau-Lifschitz, Stephani and probably the majority of Authors.
Moreover, the Greek indices run from 0 to 3 and the Latin indices from 1 to 3.
6g is a symmetric tensor, gμν = gνμ, while the electromagnetic tensor F is antisymmetric. In the
unified field theory proposed by Einstein and Schrödinger in the 50s the field is described by a
tensor with a symmetric gravitational part and antisymmetric electromagnetic contribution.

http://dx.doi.org/10.1007/978-3-319-71330-4_7
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8.2.1 Space Geometry in Stationary Problems

For two events that take place at the same point and almost at the same time, dxi = 0
for i = 1, 2, 3 and the interval is ds2 = −c2dτ 2 = g00dx20 , where τ is the proper
time, and so

dτ = √−g00dx
0. (8.5)

Clocks show their own proper time τ , not the coordinate time x0. However from a
calculated dx0, one can obtain the physical dτ if g00 is known. In general, space and
time are mixed in such a way that one cannot even define a space metric at a given
time. In Special Relativity, in order to measure the distance to a far object, one can
use the exchange of light signals and the fact that the proper time the light takes to
cover any distance is zero. However, in the presence of gravity, this is not possible
in principle. This is a fundamental complication when we try to define the distance
of a galaxy. Apart from the obvious practical impossibility to exchange signals with
remote objects like those considered in Astrophysics, the trouble is that the light can
follow different routes while the Universe expands and the galaxies move.

However, some interesting problems are stationary, and we can (so to speak)
separate time from space. Consider two nearby points A and B separated by an
infinitesimal dxμ. In principle, the exchange of signals can be done, although the
light does not take the same coordinate time to go from A to B as it takes in the
return trip. Nevertheless, imposing ds2 = 0 (as appropriate to the propagation of
light), one finds two roots corresponding to the coordinate times taken:

dx0 = g0adxk ± √
(g0ig0k − g00gik)dxidxk

−g00
, k = 1, 2, 3. (8.6)

The difference between these times is the coordinate time taken by the exchange of
signals. By using the above result, one finds the proper time dτ at A; multiplication
by c/2 gives the distance AB. Thus, in the case of stationary problems, when gμν is
time-independent, one can define the 3 × 3 metric tensor of space γi j , such that the
element of distance is

dl2 = γi j dx
idx j , (8.7)

where i, j = 1, 2, 3. It turns out that

γi j = gi j − g0ag0b

g00
. (8.8)

8.2.2 Curved Space in a Rotating Frame

As a clear example of the mixing of space and time, the transformation (2.32) to a
rotating reference takes from −ds2 = c2dt20 − dx20 − dy20 − dz20 to

http://dx.doi.org/10.1007/978-3-319-71330-4_2
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ds2 = [c2 − ω2(x2 + y2)]dt2 − 2ω(ydx − xdy)dt − dx2 − dy2 − dz2. (8.9)

This implies that gμν = ημν + hμν, where hμν are the elements of the matrix

⎛
⎜⎜⎜⎜⎝

−ω2

c2 (x2 + y2) −ωy
c

ωx
c 0

−ωy
c 0 0 0

ωx
c 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

.

Already, this simple example shows some features that we shall encounter later: the
classical potential (centrifugal in this case) is in h00, while h0i shows the mixing of
time with x and y that is related to the velocity-dependent Coriolis force. In this case,
one finds the distance element

dl2 = dr2 + dz2 + r2dφ2

1 − ω2 r2
c2

. (8.10)

This implies that an observer at rest in the rotating system would find that a cir-
cumference centered on the origin of the plane z = 0 is longer than 2πr by a factor√
1 − ω2 r2

c2 , as stated earlier by a thought experiment about the Eherenfest paradox.

8.2.3 Generalized Equation of Motion

In addition, we need extended versions of the equations of motion for a test mass,
and also of the Maxwell equations. To satisfy the general covariance requirement,
all quantities appearing in the fundamental equations must be tensors and all the
derivatives must be replaced with covariant derivatives of the type (7.19), that is,
d → D. Therefore, the equation of motion of a test mass m subject to a force field
of electromagnetic origin f must become

m

(
d2xμ

dτ 2
+ Γ μ

νσ

dxν

dτ

dxσ

dτ

)
= f μ, (8.11)

and in the absence of f, the mass follows a geodesic in space-time. Now it is obvious
that the term involving the connection coefficients stands for effective inertial and
gravitational forces. This allows us tofigure out a physical anddynamical significance
to the metric tensor and its derivatives, at least in problems in which the relativistic
effects are small. As in the last subsection, one starts by writing

gμν = ημν + hμν, (8.12)

http://dx.doi.org/10.1007/978-3-319-71330-4_7
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where ημν is the limit of Special Relativity and hμν is a correction that is considered
small neglecting its powers. Now we take advantage of the observation made earlier
that the non-relativistic potential resides in the g00 element; this observation leads
quickly to the correct result. If in Eq. (7.23), one throws away the off-diagonal g
elements, one finds

2Γ k
i j ∼ g00

∂g
00

∂xk
δi0δ j0 + g00

∂g
00

∂x j
δi0δk0 − gi i

∂g
00

∂xi
δk0δ j0,

which yields

Γ k
00 ∼ 1

2
g00

∂g00

∂xk
, Γ 0

0 j ∼ 1

2
g00

∂g00

∂x j
, Γ 0

i0 ∼ −1

2
gi i

∂g00

∂xi
.

Now we are interested in the equation of motion (μ = k = 1, 2, 3), so we use Γ k
00,

which we may further approximate as Γ k
00 ∼ 1

2
∂h00

∂xk It turns out that the equations of
motion are approximated by

m
d2xi

dt2
= −m

∂

∂xi

mc2

2
h00. (8.13)

This is theNewtonian result and confirms that the 00 element in the non-relativistic
limit is

g00 = 1 + 2V

c2
, (8.14)

where V is the gravitational potential in the weak field case.

8.2.4 Generalized Maxwell Equations

The electromagnetic tensor

Fμν = Aν;μ − Aμ;ν = ∂Aν

∂xμ
− ∂Aμ

∂xν
(8.15)

keeps its form because the terms involving the Γ symbols cancel each other; the first
couple ofMaxwell’s equations also keeps the same form as that in Special Relativity.
However, the second pair of equations must be written as

Fμν
;ν = 4π

c
Jμ. (8.16)

http://dx.doi.org/10.1007/978-3-319-71330-4_7
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A light ray with wave vector kμ goes along a straight line dkμ = 0 if there are no
gravity fields; in a field, this generalizes to Dkμ = 0. In other words, the ray follows
a geodesic,

dkμ

dxβ
+ Γ

μ
αβk

α = 0. (8.17)

8.3 Einstein Field Equations

The non-relativistic equations of motion of a test particle in a gravitational field can
be obtained through a gravitational potential V given by the Poisson equation

∇2V = 4πGρ(r, t). (8.18)

Here, ρ(r, t) is the matter density, which is a scalar in the non-relativistic theory,
and G = 6.67408−11m3kg−1s−2. This scheme allowed for an immense conceptual
progress and an accurate description of the working of the solar system. However,
it is not tenable in the light of the Principles of General Relativity and Equivalence.
Before Relativity, Oliver Heavyside suggested that the Poisson equation should be
supplemented by some gravito-magnetic field in order to allow for a finite speed of
propagation of the gravitational interactions.

Wemust summarize themain results of a research that engagedEinstein for quite a
long time, namely, the field equations that should replace theNewton equation (8.18).
A general theory cannot be deduced from a special theory, so he had to choose the
best conjecture. Besides the two Principles, Einstein considered criteria of simplicity
and elegance; he had a unique sense of Physics.

The classical scalar ρ is not available as such, because it is not a relativistic
invariant, and must be replaced with the energy-momentum tensor Tμν of Eq. (6.38);
then, at the left hand side, we must put a tensor with two indices, and initially the
curvaturewas the favorite. But it had to be traceless. It can be verified through lengthy
algebra that the Einstein tensor

Gμν = Rμν − 1

2
gμνR (8.19)

has the propertyGμν
;ν = 0, so it can replace the l.h.s. of Equation (8.18). The Einstein

equations are:
Gμν + Λgμν = 8πGNT

μν . (8.20)

Here,Λ is the so-called cosmological constant, which is a source of gravitational field
arising out of the vacuum. It can be interpreted as the energy density of the vacuum
of space and produces a sort of antigravity ifΛ > 0; it was introduced by Einstein in
1917, when it was realized that otherwise an infinite static Universe which seemed
likely at the time, should collapse like a finite Newtonian cloud of particles. But

http://dx.doi.org/10.1007/978-3-319-71330-4_6
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in 1929 Hubble discovered that the Universe was actually expanding and Einstein
repudiated the Λ term. For many years most people thought that the expansion
should be slowed down by gravity, but at the turn of the century the dimming of far
supernovae was taken as evidence that the expansion is actually accelerating. Further
evidence arose from galaxy surveys and from the cosmic microwave background.
Then, Λ was restored, even if nobody knows how this antigravity should arise. In
order to agree with the data, Λ must be so small as to be completely immaterial
when dealing with the Solar System and its surroundings, yet when the large scale
Universe is considered, it should be amanifestation of theDark Energy that is thought
to overweight all matter (baryonic, dark or whatever else). However we shall put
Λ = 0 since this is appropriate for most purposes.

Lowering an index in (8.20) with Λ = 0, one finds

Rμ
ν − 1

2
gμ

ν R = 8πGNT
μ
ν ;

since gμ
ν = δμ

ν , one finds R = −8πGNT where T = T μ
μ . Hence the Einstein

equations with Λ = 0 can be rewritten in the form

Rμν = 8πGN

(
T μν − 1

2
T gμν

)
(8.21)

where T = T μ
μ . I stress that these equations are very general since they apply for

any distribution of masses however large and fast moving, observed in a reference
system that can rotate and be subject to forces while the observer is free to adopt any
arbitrary curvilinear space-time set of coordinates.

8.3.1 Linearized Field Equations

The field equations are highly non-linear. It must be so, since the field is energy
and is itself a source of the field; by contrast, the Maxwell equations are linear,
since the field is neutral. But nonlinear equations are hard to solve. Only for a few,
symmetric situations have analytic solutions been found. In most cases, one must
resort to numerical methods. If the field is weak, hμν is small in Eq. (8.12), and it
is possible to linearize and gain some physical insight in general. Linearizing, one
finds that

Γ σ
μν = 1

2
ηστ

(
∂hμτ

∂ν
+ ∂hτν

∂μ
− ∂hμν

∂τ

)
. (8.22)

Since the h corrections to the metric become potentials in the weak field case, the
Christoffel symbol is a combination of field components. Then, letting h = hα

α, and
using η instead of g to raise and lower indices, one finds through tedious algebra that
the Ricci tensor is approximated by
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Rμν = 1

2

(
∂2hσ

μ

∂xν∂xσ
+ ∂2hσ

ν

∂xμ∂xσ
− �hμν − ∂2h

∂xμ∂xν

)
, (8.23)

where � = ημν∂μ∂nu . At this point, the reader could expect to find a wave equation
yielding the recently detected gravitational waves. From the start, Einstein thought
that the field should propagate with the speed of light, and the linearized equation in
vacuo Rik = 0 is not of the form of a wave equation, but is awfully complicated. This
complexity essentially depends on our complete freedom to choose the coordinate
system that might move about and rotate in an arbitrary way; in addition, there is a
gauge invariance analogous to the electromagnetic one. In fact, one can show that
by choosing the Fok gauge

∂hν
σ

∂ν
− 1

2

∂h

∂σ
= 0, (8.24)

we obtain simply

Rμν = −1

2
�hμν (8.25)

for the Ricci tensor in the limit of weak fields. Then, the Einstein equations reduce
to

�hμν = −16πG

c4

(
Tμν − 1

2
T gμν

)
. (8.26)

Gravity waves will be discussed in Sect. 8.11. In the static case, only the only nonzero
component is T 0

0 = ρc2, and one finds Poisson’s equation for the 00 component and
for the diagonal spatial components; consequently,

ds2 = −
(
1 + 2V

c2

)
c2dt2 +

(
1 − 2V

c2

)
(d r2). (8.27)

8.4 Schwarzschild Solution and Black Holes

Already in the late eighteenth century, Pierre Simon,Marquis deLaplace, conjectured
that stars having large mass and small radius could have an escape velocity larger
than c, and therefore should be black and invisible. Let us see how black holes emerge
from Relativity. The length rS = 2MG

c2 is called the Schwarzschild radius for a body
having mass M . In 1916, at the German-Russian front, Karl Schwarzschild found the
static solution to the Einstein equations for the gravity field of a point-like spherical
body in vacuum. In spherical coordinates, it reads as:

− ds2 =
(
1 − rS

r

)
c2dt2 − dr2

1 − rS
r

− r2dθ2 − r2 sin2(θ)dφ2. (8.28)
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This is singular for r = rS; therefore, the metric is valid for r > rS. The mean-
ing of the divergence is that an observer who is at rest at a great distances cannot
observe what happens inside the so-called horizon of events. In order to understand
the physical implications of the 4-d metric (8.28), we must use it to model thought
experiments in which some observer measures times and lengths in terms of their
own proper times and lengths. To start with, as in Special Relativity, ds = cdτ ,

where τ is the proper time recorded by a clock placed at the chronotopic point spec-
ified as (t = x0

c , r, θ,φ). Then, what is the coordinate time t? The relation to the
proper time is obtained by fixing the point, that is, by setting dr = 0, dθ = dφ = 0
in (8.28). One obtains

dt = dτ√
1 − rS

r

. (8.29)

Now it is clear that for r � rS, the coordinate time t is close to the proper time τ ,
but in General Relativity, one is interested in the departures from the Newton theory
and in situations when such departures may be substantial. In the same way, r cannot
be identified with the distance from the center, since the metric blows up at r = rS
and so the centre is off limits; moreover, setting in (8.28) dθ = dφ = 0, dt = 0
we get the equal-times interval, which is minus the square distance dR2 = ds2 =
dr2

1− rS
r
; so, the infinitesimal proper length is dR = dr√

1− rS
r

. Again, this diverges as

r → rS . The distance between two r values, say, r1 and r2, is given by the integral
d[r1, r2, rS] = ∫ r2

r1
dr dr√

1− rS
r

. This integral is elementary and the antiderivative is
√
r(r − rS + rS ln[√r + √

r − rS] (Fig. 8.1).
The validity of the metric (8.28) ends at the horizon, but nothing special happens

there. An observer right at the horizon of a large black hole would consider it a place
like any other. A coordinate change named afterMartinKruskal andGyörgy Szekeres
allows us to extend the validity (for a point mass) to all space-time (except for the
central singularity). The transformation (r, t) → (u, v) is illustrated in Fig. 8.2. The

Fig. 8.1 The integral d[r1, r2 = 5, rS = 1] represents the coordinate distance between an observer
at r2 = 5 and a reckless companion at r1, in units of rS .Classically, when the companion approaches
the horizon, the distance should approach 4rS . Instead, the relativistic trend is represented in the
upper curve
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Region 1,t<0

Region 1,t>0

Region 2,t<0 Region 2,t>0

t=∞ ,
ho
riz
on

u

v

Fig. 8.2 The Kruskal diagram. Region 1 is split by the u axis into t > 0 above and t < 0 below.
Region 1 is split by the v axis into t > 0 (right) and t < 0 (left). The straight border between the

two regions corresponds to r = rS and t = ∞. In Region 1, the hyperbolas v = ±
√
u2 + 1 − 2

rS
are constant-r curves; the red one has r = 1.1rS and the blue one has r = 1.2rS . The straight lines
have constant t . In Region 2, the black hyperbola v = √

1 + u2 represents the singularity r = 0,
the red one has r = 0.5rS and the pink one r = 0.9rS

u−v plane is divided into four regions by the lines u = ±v. Region 1 represents the
region outside the horizon and contains the positive u axis, while Region 2 represents
the region inside the horizon and contains the positive v axis. The remaining half
plane is not used by the above parametrization. The new coordinates u, v are defined
in Region 1, that is, for r > rS, by

u =
√

r

rS − 1
exp

(
r

2rs

)
cosh

(
ct

2rS

)
(8.30)

v =
√

r

rS − 1
exp

(
r

2rs

)
sinh

(
ct

2rS

)
, (8.31)

and in Region 2, that is, for r < rS by

u =
√
1 − r

rS
exp

(
r

2rs

)
sinh

(
ct

2rS

)
(8.32)

v =
√
1 − r

rS
exp

(
r

2rs

)
cosh

(
ct

2rS

)
, (8.33)

v2 − u2 =
(
1 − r

rS

)
exp

(
r

rS

)
. (8.34)
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With this transformation, the metric becomes:

ds2 = 4r3S
r

e− r
rS (du2 − dv2) + r2(dθ2 + sin2(θ)dφ2), (8.35)

where r(u, v) is r expressed as a function of u and v. The angular dependence is
(r2(dθ2 + sin2 θdφ2), with r = r(u, v).

One can verify that the metric (8.35) solves the Einstein equations everywhere
outside the singularity. The diagram is quite effective in demonstrating the properties
of the black hole. Suppose one wishes to send a signal from outside to the singularity.
The starting space-time point must be chosen in Region 1. The propagation takes no
proper time, so ds = 0 and du = ±dv. Thus, the word line of the signal will be
parallel to the v = −u axis and will hit the singularity, necessarily after crossing the
t = ∞ line. The physical meaning is that an observer in Region 1 will have to wait
an infinite time to see the signal crossing the horizon. Similarly, if a material body
is fired to the singularity, it will fall to it and be swallowed in a finite proper time;
however, an outside observer will see it accelerating according to the Newtonian
physics, but then decelerating, becoming dim and never reaching the horizon. The
slowing down of clocks (or red-shift phenomenon) eventually wins.

8.5 Relativistic Delay of Signals in a Gravity Field

Shapiro, in 1964, suggested a test of General Relativity based on the following
principle. A planet between Earth and the Sun or beyond the sun but visible near
the solar disk can be used as a mirror that reflects a radio signal. The signal emitted
from rE and reflected at the planet in rR will explore the metric (8.28) generated by
the solar mass. The coordinate time length of the outward voyage can be obtained
putting in (8.28) dτ = 0 (since the signal travels at c) and dθ = dφ = 0. Integrating,
and multiplying by 2 to include the return trip, one finds that Δt = 2

c

∫ rR
rE

dr
1− rS

r
.

This is the coordinate time interval. To convert it into the proper time, we use
(8.6), do the integral and find

δτ = 2

c

√
1 − rR

rE

[
rR − rE + rS ln

∣∣∣∣
r E − rS
r R − rS

∣∣∣∣
]

. (8.36)

This is not the length of the trip divided by c. The gravity field of the sun causes
a delay, which, for Mercury or Venus, is about rS

c [ln( rErR ) + rE−rR
rR

]. Measurements
performed on upper conjunctions of Venus (i.e. Venus close to the sun in the sky
but beyond the sun) were already performed in 1970 and more measurements were
done by the rockets Mariner 6 and Mariner 7, giving excellent agreement with the
theory. One can be surprised by the apparent reduction of the speed of light from c
to something like c(1 − rS

r ), where r is the distance from the sun. However this is
an effect of curved space-time that can be rationalized in terms of an increase of the
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radial distances and a slowing down of the time in the neighbourhood of important
masses. Any local measurement done by taking rods and clocks into the space close
to the sun would give c for the speed of light, because rods and clocks would be
affected themselves by the field.

8.6 Clocks in a Gravity Field, GPS and Gravitational Red
Shift

Let us perform some thought experiments in the gravity field described by the
Schwarzschild metric (8.28) of a massive body. The first experiment consists in
the emission of a light signal from a point (rE , θE ,φE ) at time tE and its detection at
the space-time point (rR, θR,φR, tR). The light follows a null geodesic in space-time,
and the time it takes, i.e. tR − tE , depends only on the two space points and can be
obtained from the metric once the space trajectory of the light is specified; finding
the trajectory is a problem of geometry that can be solved once and for all and does
not concern us in this example. If the experiment is repeated after a delay ΔtE , the
same delay affects the reception, so ΔtR = ΔtE . This entire story looks the same as
that of the Newton dynamics, but it is different, because clocks measure the proper
time τ , not t , and the two are related by Eq. (8.6). This implies that

ΔτR = ΔτE

√
1 − rS

rR

1 − rS
rE

. (8.37)

The actual repetition frequency is modified by the gravity field. In the next thought
experiment, instead of measuring the repetition frequency we measure the color of
the light and say that its frequency depends on the position in the field of the source.
As before, the ratio of frequencies is

νR

νE
=

√
1 − rS

rE

1 − rS
rR

. (8.38)

The weak field case can be obtained by expanding this result for small rS; the same
result is obtained setting ds = cdτ and d r = 0 in the approximate metric (8.27).
The proper time τ of a clock is related to the time t measured by an identical clock
outside the field by

dτ =
√(

1 + 2V

c2

)
dt ∼

(
1 + V (r)

c2

)
dt. (8.39)

Since U = 0 at infinity and U < 0 in the field, a distant observer will conclude that
the field makes the clocks run slow. Of course, the variable r that appears in these
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expressions is a coordinate radius, which is not simply the distance from the origin
in the case of strong fields, near the horizon.

The gravitational redshift of spectral lines in the light coming from the sun, and
particularly from dense stars like white dwarfs, was observed long ago.

For an atom A that emits at a proper frequency νA at distance rA from a mass M,

an observer B at distance rB from M will see light at frequency νB

νB − νA

νA
∼ GM

c2

(
1

rB
− 1

rA

)
, (8.40)

assuming that the fields are weak (the gravitational energy must be small compared
to the rest energy). For an atom in the gravitational field of a star with radius R and
Schwarzschild radius rS, this implies a red shift of the frequency given by

Δν

ν
= r0

2R
. (8.41)

For the Earth, M = 6 × 1024 kg, rS = 9 × 10−3 m and Δν
ν

is on the order of 10−9,
for the sun, M = 2 × 1030 kg, R = 7 × 108 m, rS = 3km, and the shift is still one
part in a million, but for a neutron star with one solar mass and a radius of order 104

m one expects Δν
ν

is in the scale of 10−1.

A measurement of the gravitational red shift in the laboratory was performed
for the first time in 1965 by Pound and Snider using the Mössbauer effect, a laser
and the Earth’s gravity. Now this is routine. The clocks on the satellites used for the
Geo-positioning Systemmust be corrected to account for relativistic effects. They go
slow (compared to clocks on Earth) by 7ms/day because of the time-dilation effect of
Special Relativity, but they go fast by 45ms/day because of the gravitational effect.
Such small times are important in practice, because light is so fast. Without the
resulting correction of 38ms/day the GPS of our cars would have errors on the order
of kilometers.

8.7 Bending and Gravitational Lensing of Light

For the present purposes, it suffices to consider the propagation of a ray according
to Eq. (8.17) in a weak field whose metric is given by (8.27) produced by a mass M
centered at the origin. We shall keep the lowest order effects. Letting the ray come
parallel to the x axis, with four-vector kμ = (k0(x), k1(x), k2(x), k3(x) such that
k1(−∞) = k, k2(−∞) = k3(−∞) = 0. Let the impact parameter be R. Assume
that the ray is deflected by a small angle, which can be approximated by α = k2(∞)

k1 .

Since the covariant components of g are diag(−(1+ 2V
c2 ), (1− 2V

c2 ), (1− 2V
c2 ), (1− 2V

c2 )),
the contravariant components are immediately found and we readily obtain the affine
connection directly from Eq. (7.23). One finds Γ 2

11 = ∂2V
c2 . Therefore,

http://dx.doi.org/10.1007/978-3-319-71330-4_7
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dk2

dx
= −2ω

c3
∂2V . (8.42)

Integrating, one finds

α = −4GM

Rc2
= rS

R
, (8.43)

where rS is the Schwarzschild radius. The massless light is deflected like a particle
of mass M that feels an acceleration g = MG

R2 along a path length 2R; indeed, setting
x ∼ ct, y ∼ gt2

2 , one gets y′(x) ∼ GMx
R2c2 , and for x = 2R, tan(α) ∼ α yields

Eq. (8.43).
In the case of the sun, inserting rS = 3km and R = 7 × 105 km in Eq. (8.43)

one finds 8.57× 10−6 which corresponds to 1.75 arc seconds. This was first verified
approximately in an eclipse in 1919, and has been so repeatedly with increasing
precision since then.

The empty space behaves like a non-dispersive dielectric medium because of the
distortion due to gravity. This is very important in astrophysics. Galaxies are often
seen to distort and amplify the images of background objects, often showing arcs,
so-called Einstein rings or multiple images of the same object. In Sect. 9.5, we shall
see that single photons may form multiple images corresponding to different routes
from a Quasar around a Galaxy to Earth, and then interfere with themselves. This is
a very large scale test of Quantum Mechanics!

8.8 Shift of the Perihelion

TheKepler problem leads to closed orbits for the reasons discussed in Sect. 2.6, but in
the Solar System the perihelion of each planet shifts a little at each orbit. Already in
the Newtonian approximation, the many-body problem is formidable because of the
mutual interactions, and such systems tend to be unstable in the long run7; however,
in our solar system the corrections that cumulate in one orbit of each planet are
so small that one can simply add the effects of each binary interaction, and at the
beginning of the XX century it was known that the sum of the corrections added to
a total 5557 arc seconds per century, while the observed shift of the perihelion was
5600 arc seconds. This was indeed explained by Einstein as another small, additive
correction of relativistic origin. One can model the situation as if Mercury was a test-
particle moving in a geodesic of the Schwarzschild metric (8.28). Then, the nonzero
elements of the metric are:

7The orbits of many body systems are chaotic over long timescales. The Solar System possesses a
Lyapunov time, perhaps in the range of a hundred million years (the Lyapunov time is the charac-
teristic timescale on which a dynamical system is chaotic) although we know that life has definitely
existed for a longer time than that. However the relativistic shift has been observed through its
cumulative effects on the scale of a century.

http://dx.doi.org/10.1007/978-3-319-71330-4_9
http://dx.doi.org/10.1007/978-3-319-71330-4_2
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g00 = −
(
1 − rS

r

)
= 1

g00
, g11 =

(
1 − rS

r

)
= 1

g11
,

g22 = r2 = 1

g22
, g33 = r2 sin2(θ) = 1

g33
.

The motion can be taken to be confined to the plane θ = π
2 . The geodesic the planet

follows can be derived from the Lagrangian (7.26), which, in this metric, is given by

LGeo = 1

2

[
ṙ2

1 − rS
r

+ r2φ̇2 −
(
1 − rS

r

) (
d(ct)

dτ

)2
]

. (8.44)

The proper time of the planet is
∫
dτ along the space-time geodesic, which is given

by the action principle using the above Lagrangian; therefore, the action integral is
proportional to the proper time. We define the proper time as given by:

ṙ2

1 − rS
r

+ r2φ̇2 −
(
1 − rS

r

) (
d(ct)

dτ

)2

= −c2. (8.45)

As in the classical case, we have two conservation laws arising from cyclic coordi-
nates, namely, φ and t . The former yields ∂L

∂φ̇
= 0, that is, the conservation of angular

momentum

r2
dφ

dτ
= L , (8.46)

where L is a constant of integration, essentially the angular momentum of the planet
divided by its mass; the latter conservation law is ∂L

∂ ṫ = 0 and gives us

(
1 − rS

r

)
ṫ = Z , (8.47)

where Z is another constant. We eliminate the time derivative by writing dr
dt = dr

dφ
φ̇.

Putting (8.47) and (8.46) in (8.45), one arrives at:

c2
(
1 − rS

r

)(
ṫ

φ̇

)2

−
(

dr
dφ

)2

1 − rS
r

− r2 =
(
c

φ̇

)2

.

Now we may set

ṫ

φ̇
= dr

dφ

http://dx.doi.org/10.1007/978-3-319-71330-4_7
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and obtain the differential equation

(
dr

dφ
)2 = c2Z2r4

L2
− r2

[
1 +

(cr
L

)2
] (

1 − rS
r

)
= 0, (8.48)

which determines the angular dependence of the radial coordinate. As long as we
can identify r with the distance from the origin (which is correct for weak fields) this
can be understood as the equation for the orbit. In order to make the equation slightly
simpler, we set u = 1

r , which implies dr
dφ

= −1
u2

du
dφ

., One finds, after multiplying both

sides by u4,
c2(Z2 − 1)

L2
+ c2rS

L2
u + rSu

3 = u2 +
(
du

dφ

)2

. (8.49)

This could be integrated, but it is customary to differentiate with respect to φ and
get:

d2u

dφ2
+ u = A + Bu2, (8.50)

where A = GMm2

L2 = c2rS
2h2 , B = 3GM

c2 = 3
2rS and h = L

m = r2ω is the classical
angular momentum of the planet divided by its rest mass; this is the generalization
of Equation (2.41) of Classical Mechanics, that in he present notation becomes:
d2u
dφ2 + u − GMm2

L2 = 0. Even in the full theory, the mass of the planet does not enter
into it. Equation (8.50) can be studied numerically on a laptop, see Fig. 8.3. It turns
out that for B = 0, we get the classical closed orbits which are circular if A = 1.
The extra term B produces a rosetta-like orbit and the deviations from the Newtonian
theory are large in the case of compact binary stars.

The great accuracy of the Newton theorymakes it clear that B is very small, and so
one can trivially solve the problem throughperturbation theory, i.e., by approximating

Fig. 8.3 Orbits obtained by
a polar plot of the inverse
r = 1

u of numerical solutions
of Equation (8.49). Top left:
A = 1, B = 0; Top right:
A = 3, B = 0; bottom left,
several orbits with A = 3,
B = 0.01; bottom right:
several orbits with A = 3,
B = 0.02

http://dx.doi.org/10.1007/978-3-319-71330-4_2
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the factor of B by the Newtonian solution. One easily finds that the rate of precession
of the perihelion is:

Δφ

T
= 3πrS

T a(1 − e2)
, (8.51)

where a is the semi-major axis of the ellipse and e its eccentricity. The two are
bound by the relation a(1 − e2) = L

GMm2 , where L is the angular momentum. The
calculated shifts are 42.9" per century forMercury, 8,6" for Venus, 3.8" for the Earth,
and 1.35" forMars. They have been confirmed by the observations; the main residual
uncertainties are due to small complications like the quadrupole moment of the sun.

8.9 Geodetic Effect

Consider a gyroscope on a satellite in a circular orbit around a mass, e.g. the Earth.
An observer on the satellite is in free-fall, and therefore notices that the gravity
field is locally removed; he establishes a frame of reference with the origin on the
satellite and axes oriented in such a way that the fixed stars do not move. Finally, he
sets a gyroscope in a fixed position with respect to his reference. According to the
Newtonian mechanics, both the observer on the satellite and an observer on Earth
agree that no force and no torque are acting on the gyroscope which should keep
rotating around the Earth in the sameway forever, keeping its axis forever in the same
direction. In General Relativity, there are three distinct effects that cause tiny changes
of the rotation axis at each rotation around the Earth. Two effects are related to the
rotation of the Earth, and will be described briefly in the next section. This section is
devoted to the geodetic effect (sometimes called the geodesic effect), which occurs
because the satellite is rotating around a mass, independently of the rotation of the
latter. The mass produces a Schwarzschild metric in the reference of the Earth; this
metric does not mix time with the angles and there is no precession for gyroscopes
on Earth. However, the instantaneous frame on the satellite is connected to the Earth
frame by a Lorentz transformation, and this does mix space and time. Therefore,
the metric tensor on the satellite depends on time; this produces a time-dependence
of the components of the spin in the satellite reference. For symmetry reasons, a
gyroscope which is set in the plane of the orbit must remain in the plane. The rate of
change of the spin s of a gyroscope in orbit with radius r and velocity v due to this
effect is found, using a weak field approximation, to be

ds
dt

= ΩG ∧ s, (8.52)

where

ΩG = 3

2

rS
r3

r ∧ v. (8.53)
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If the gyroscope points away from Earth and turns anticlockwise, the spin is positive.
Then, for each rotation, the axis gains an angle of order α = 3

2π
rS
r . The effect was

verified experimentally in 2007 with an accuracy better than 0.5 per cent by the
Gravity Probe B cooperation,8 using a satellite in a polar orbit at 642km from Earth;
the shift was in the direction of motion and was as small as 0.0018 degrees per year.

8.10 Frame Dragging and Gravitomagnetic Field

Since all forms of energy, including kinetic energy, contribute to the gravity, one
must expect that in the relativistic theory, the rotation of the sun must have some
influence on the motion of the planets. This is true, but there is more. If the mass
rotates, the metric (8.28) is superseded by the Kerr metric, discovered in 1963,

ds2 = (r2 + a2 cos2(θ))

[
dr2

r2 − 2Mr + a2
+ dθ2

]
+ (r2 + a2) sin2(θ)dφ2 − c2dt2

+ 2Mr
(a sin2(θ)dφ − cdt)2

r2 + a2 cos2(θ)
, (8.54)

where M is the mass, Ma is the z component of the angular momentum of the
rotating body; this reduces to (8.28) for a = 0. This has also been used to describe
a rotating black hole. The Kerr metric has the direction of the angular momentum
as a preferred direction; the singularity is surrounded by an event horizon of radius
r = M + √

M2 − a2 and by an ergosphere delimited by a limit of stationariness
within a surface of equation rθ = M + √

M2 − a2 cos2 θ, (θ = 0 in the direction
of the angular momentum). The ergosphere is a region of extreme frame dragging,
so it is time to introduce this phenomenon. Josef Lense and Hans Thirring already
predicted a rotation of the orbit of a test particle around a rotating body already
in 1918, and applied their findings to the solar system. The Lens-Thirring effect
depending on the angular momentum J of the Sun consists of a precession of the
nodal plane,which is the intersection of the orbital plane of a planewith the equatorial
plane of the Sun; this is independent of the perihelion precession discussed above,
which does not depend on the rotation of the Sun. It depends on the semimajor axis
a of the orbit on its eccentricity e. The angular frequency of rotation is 2J

a3(1−e2)
3
2

(Fig. 8.4).
TheLense-Thirring rotation on the orbit of a satellite around theEarth is extremely

slow, but the effect has been verified by the LAGEOS satellite (Laser Geodynamics
Satellite) in 2004, and with better accuracy by the Gravity Probe B cooperation more
recently.

8See CWF Everitt et al., Class. Quantum Grav. 32 (2015) 224001.
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Fig. 8.4 The singularity in the Kerr solution is surrounded by an event horizon (black) and by a
“limit of stationariness” (red); here M = 1 and a = 0.6; the angular momentum is in the horizontal
direction

The most characteristic term in (8.54) is the one in dφdt . The reader might have
noticed that a mixing of time and space in the metric occurs here and in the rotating
platform problem. The Coriolis inertial force has a gravitational analogue, namely,
gravito-magnetism. Actually, in the weak field case, A = (h01, h02, h03), is like a
three-vector in analogy with the electromagnetic vector potential; its curl H is the
gravito-magnetic field H . This produces a gravitational Lorentz force

F = mv ∧ H, (8.55)

which acts on the masses in a way that resembles the magnetic force acting on
charges. The force (8.55) also produces a torque on gyroscopes. The effect is similar
to the precession of a magnetic moment in a magnetic field. If we put the origin at
a massive body with angular momentum J , the angular velocity of precession of a
gyroscope at x can be shown to be − H

2 .
A fallinggyroscope,which is not rotating initially, defines an instantaneous inertial

system, like any test particle. The remarkable effect is that if the field is produced
by a rotating body, the instantaneous inertial system is rotating, while a non-rotating
system would not be inertial. Therefore one speaks about a dragging of inertial
frames. The rotation of the Earth causes the rotation of the inertial system in the
satellites. The effects on artificial satellites are very small and tends to be masked
by other effects, like irregularities in the Earth’s field, however, the predictions of
General Relativity have been tested and confirmed by accounting accurately for
all the disturbing effects. According to predictions by Pugh and Schiff, this frame
dragging effect produces a drift rate for a gyroscope on a satellite at distance r from
the centre of the Earth9

ds
dt

= Ω f d ∧ s (8.56)

9See C.W. Everitt et al., Classical and Quantum Gravity 32, 224001 (2015).
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with

Ω f d = GI

c2r3

[
3r
r3

(ωe · r) − ωe

]
, (8.57)

where I is the moment of inertia and ωe the angular velocity of our planet.
In the geometry chosen by Gravity Probe B, as mentioned above, the orbit is polar

and the frame dragging effect 1.1×10−5 degrees per year is well-separated from the
Geodetic effect, because the two shifts are at right angles, with the frame dragging
producing a shift towards the west while the Geodetic effect acts in the North-South
direction. In the ergosphere of a rotating black hole, the frame dragging is so strong
that all masses are forced to rotate around the black hole; however, in principle, an
object can enter it and leave. Roger Penrose suggested that masses could be thrown
in and extracted with increased energy, obtained at the expenses of the black hole
rotation energy.

8.11 Gravitational Waves

It is time to resume, from Sect. 8.3.1, the analogy and the differences with electro-
magnetism in the production of radiation. From Eq. (8.26), the linearised equations
for the correction to ημν in vacuo are just the familiar wave equations

�hμν = 0; (8.58)

for waves propagating along the z axis, the solutions are of the form

hμν = hμν(kz − ωt + φμν), (8.59)

where k = ω
c and φμν are constant phases. Using these, one must look for the metric

tensor. One can show that there are two polarizations. The metric associated with the
plane waves propagating along z is of the form

ds2 = (1 + hxx )dx
2 + 2hxydxdy + (1 − hxx )dy

2 + dz2 − c2dt2; (8.60)

there are solutions of the xx type (with hxy = 0) and solutions of the xy type (with
hxx = 0). The first kind tends to stretch and compress objects along the x and y axes
in phase, while the second does the same at 45 degrees.

Since there are no negative masses, there are no dipoles and there is no dipole
radiation. The leading contribution is quadrupolar. From the field equations, one can
derive the energy P radiated per unit time when masses are accelerated.

P = G

5c5

3∑
α,β=1

(
d3Qαβ

dt3
)2, (8.61)
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where

Qαβ(t) =
∫

ρ(x, t)(xαxβ − δαβ
r2

3
)d3x (8.62)

are the components of the quadrupole tensor. Here is the Fourier transform of the for-
mula describing the power radiation of electric quadrupole electromagnetic waves.10

P = ck6

360

∑
α,β

|Qαβ |2. (8.63)

Apart from the factor in front of the summation, the similarity is evident. For a
periodic motion, Eq. (8.61) implies that P ∼ Gω6

c5
∑3

α,β=1 Q
2
αβ . The binary pulsar

PSRB1913+16 discovered in 1974 by Russell Alan Hulse and Joseph Hooton Taylor
provided an indirect but compelling confirmation of gravity waves; for this reason,
they received theNobel prize in 1993. It is a system of two neutron stars, one of which
is a pulsar. Pulsars emits a narrow cone of radiation while rotating very fast, and the
radiation arrives on Earth as a series of regular pulses. In this case, the period is about
59ms. The two neutron stars are close to each other and rotate around their centre
of gravity in just about 7.75h. The pair emits energy in the form of gravitational
energy, and this causes a measurable decrease of the period (and eventually, the two
stars will collide and coalesce, producing a strong blast). The observations were in
agreement with the calculations based on General Relativity.

Finally, gravity waves were detected directly for the first time in September 2015
by researchers of Caltec, MIT and LIGO; the data were interpreted as being due to
themerge of two black holes that occurred 1,3 billion years ago. The signal frequency
increased from 35 to 250Hz during the last orbits of both objects approachingmerge.
The amplitude of the oscillations was in the range of 10−15 m. It was possible to
determine the masses (29 and 36 solar masses) and it was estimated that about 3 solar
masses where emitted in the form of gravitational waves. Several similar events have
been reported since then, even in coincidencewith theVirgo gravitywave observatory
in Cascina (Pisa, Italy). For this enormous achievement, the Nobel Prize for Physics
for 2017 has been awarded to the U.S. scientists Kip Thorne, Barry Barish and Rainer
Weiss and the international cooperations Ligo and Virgo have been mentioned in the
motivation. The detection of gravity waves was hailed as the beginning of a new
branch of Astronomy. Indeed, in 2017 the LIGO and Virgo collaborations detected
gravitational waves originating from the coalescence of a binary neutron star system,
which also originated a gamma-ray burst observed by the Fermi gamma-ray Space
Telescope; the finding was confirmed by optical telescope observations of the same
event.

10see e.g. John D. Jackson, “Classical Electrodynamics”, Sect. 9.3.

http://dx.doi.org/10.1007/978-3-319-71330-4_9
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8.12 The Standard Model of Cosmology

Cosmology is extremely mind-bending application of Theoretical Physics to the
Universe, but the starting point that embodies the simplest consequences of General
Relativity in this field is rather simple. The Newtonian theory cannot describe prop-
erly an infinite Universe and in the case of a finite one, it cannot treat all points on the
same footing. The relativistic standard model is based precisely on these symmetry
properties, namely, isotropy and homogeneity, which allow for a simple solution of
the Einstein equations which would otherwise be hard to handle. The stress-energy
tensor will be independent of position; moreover, we can choose a co-moving refer-
ence, that is, we may set the velocity of matter to zero in every point; then, the stress-
energy tensor (6.30) has only one nonzero component, namely, T 0

0 = −(ρc2 + ρU ),

and this component does not depend on position. The component g00 of the metric
tensor determines the proper time of a body at rest, so it cannot depend on position.
We know that the components g0k, k = 1, 2, 3 have to do with rotations, and the
above principles strongly suggest that we can safely take g0k = 0. In conclusion, we
are led to a metric of the form

ds2 = −dl2 + c2dt2

and the 3d spacemetric g0k, i, k = 1, 2, 3 yielding dl2 must be such that the curvature
is the same throughout. We have already met such constant-curvature 3d spaces in
Sect. 7.0.2 and we know that basically we have the choice between a closed Universe
with space metric proportional to (7.36) and an open Universe (7.38). The closed
Universe arises from the space metric (7.36) yielding the space-time metric:

ds2 = c2dτ 2 − a2[dχ2 + sin2(χ)(dθ2 + sin2(θ)dφ2]. (8.64)

This becomes flat for a → ∞ (recall the definition sin(χ) = r
a ).

Similarly, the open Universe arising from Equation (7.38) has the space-time
metric

ds2 = c2dτ 2 − a2[dχ2 + sinh2(χ)(dθ2 + sin2(θ)dφ2]. (8.65)

Alexander Friedmann, Georges Lemaître, Howard P. Robertson and Arthur Geof-
frey Walker formulated this model before 1930, without the cosmological term Λ

which was not supported by the data available then.
The Einstein equations for these models can be solved exactly; this can be done

directly using the definition of the curvature tensor or using some tricks that are
presented in Landau-Lifschitz and other classics, but the argument is still rather
long.

In the case of (8.64) it is expedient to replace the time with a new variable, by
putting

http://dx.doi.org/10.1007/978-3-319-71330-4_6
http://dx.doi.org/10.1007/978-3-319-71330-4_7
http://dx.doi.org/10.1007/978-3-319-71330-4_7
http://dx.doi.org/10.1007/978-3-319-71330-4_7
http://dx.doi.org/10.1007/978-3-319-71330-4_7
http://dx.doi.org/10.1007/978-3-319-71330-4_7
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a = c
dt

dη
; (8.66)

then,
ds2 = a2[−dη2 + dχ2 + sin2(χ)(dθ2 + sin2(θ)dφ2]. (8.67)

Now gμν = diag(g00, g11, g22, g33) = diag(−a2, a2, a2 sin2(χ)a2 sin2(χ) sin2(θ))
and gμν = diag(g00, g11, g22, g33) with gμμ = 1

gμμ
.

The result depends on the total mass M of the Universe, which is a conserved
quantity. We need the constant a0 = 2kM

3πc2 , where k = c4GN . Eventually, one finds
the parametric law governing the size of the Universe a, namely,

a(η) = a0(1 − cos(η)),

t = a0
c

(η − sin(η)). (8.68)

It turns out that the Universe reaches a maximum size, then collapses to a point
and restarts expanding. It is a pulsating Universe with period T = 2πa0

c . In the case
(8.65) the Universe is open and expands forever:

a(η) = a0(cosh(η) − 1),

t = −a0
c

(η − sinh(η)). (8.69)

It would be exciting to discover that we are in a curved Universe, possibly with a
nontrivial topology; the data, however, say that Nature does not like such complica-
tions, and the Universe is accurately flat. For a flat Universe,

ds2 = −c2τ 2 + b2(dx2 + dy2 + dz2), (8.70)

and one can show that (
db

dt

)2

= 8πG

3c2
ρ(U + c2)b2, (8.71)

where it is reasonable to assume that ρ(U + c2)b3 is constant; then, b grows as a
power of t (Fig. 8.5).

Einstein started to apply his theory to the large-scale structure of the Universe
in 1917, before the two major discoveries by Edwin Hubble: in 1925 he established
the existence of Galaxies outside the Milky Way, leading to a much larger Universe,
and in 1929, he discovered the expansion of the Universe.11 The expansion causes a

11In some way Theory and Experiment were in competition since Georges Lemaître had predicted
the redshift-distance relation in 1927.
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Fig. 8.5 a(t) for the open Universe (red) and for the closed Universe (black) versus time. The red
curve eventually increases to infinity linearly, while the black one reaches a maximum and then
goes to zero symmetrically, leading to a pulsating Universe. Our Universe is still so young that the
two curves (and the flat Universe) are hard to distinguish

redshift of the light of a galaxy at distance d; the redshift is like a Doppler shift due
to a velocity v given by

v = Hd (8.72)

where the Hubble constant H is on the order of 45–90km per second perMegaparsec
and 1 parsec is about 3.26 light years. Each Galaxy also has a peculiar velocity,
therefore v is a sort of average value. There is some vague analogy between the
galaxies in the expandingUniverse and cue balls painted on the surface of an inflating
balloon. However, the cue balls on the balloon should grow in size, while the sizes of
atoms, the Earth, the Solar System and the Galaxy do not grow: the expansion creates
space betweenbound systems, but not inside them.The discovery cameunexpectedly,
but it finally explained the old Olber’s paradox. The astronomer Heinrich Wilhelm
Olbers (1758–1840) remarked that if the Universe were infinite and static, there
should be stars in every solid angle. Indeed the night sky is dark because the farthest
stars are red-shifted by the Doppler effect.

In 1964, Penzias and Wilson made the fortuitous but very important discovery of
the cosmic background radiation at 2.7K, which confirmed the hot Big Bang, and at
the time there was a very optimistic feeling that the concepts and the laws of Physics
developed on this Planet were ruling the Universe and although largely incomplete
the mosaic was under way. None could question that Cosmology was a branch of
Physics. In the 60s, the exploration of the Solar System started. The relevant distances
and masses had been estimated before the space era quite accurately by the available
telescopes, the parallax and the knowledge of the Newton theory of gravity. The
parallax of nearby stars is measurable, and since we know the size of the orbit of the
Earth the distance can bemeasured. However, most stellar distances can bemeasured
by more indirect means, and one must rely on the luminosity of peculiar stars (novae,
Cefeid variable stars) that can be used as standard candles. This works for the near
Galaxies, but the uncertainties grow when dealing with large intergalactic distances,
on the order of many millions of light years. At still larger distances, one can rely on
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the luminosity distance DL =
√

L
2πl , where L is the absolute luminosity and l is the

power received from the source; another possibility is based on the angular size and
the real size of the object. Both methods are affected by the possible evolution of
the source in the course of millions or billions of years, and at any rate, the estimate
must be based on some assumption on the metric of space-time. At large cosmic
distances (many millions or several billions of light years), the relativistic effects are
large, as is evident from the large red shifts due to the expansion of the Universe. In
addition, it should be kept in mind that in General Relativity, the distance between
two objects is meaningful only locally. The distance l loses the obvious meaning of
everyday life unless the metric tensor is time-independent; this assumption cannot
hold in an expanding Universe. In general one can define the element of distance
dl and then compute

∫
dl over a curved space-time, but the result depends on the

path of integration. At any rate, the red shift makes distant objects dimmer and
dimmer. In Special Relativity, nothing can go faster than light, but there is no such
limitation to the expansion of the Universe. It is clear that the major part of the
Universe recedes from us at super-luminal speeds; on the other hand, we can observe
only the objects which recede with speed less than c. With such caveats, the age
of the Universe is 13.8 billions of years, and taking the expansion into account, the
edge of the observable Universe is estimated to be at 46 billion light years. The
task of building a coherent scheme in which the observation could be rationalized
appeared more feasible 40 years ago than it does now. The main issue then was to
know whether the gravity-induced slow-down of the expansion was enough to stop
it and produce a cosmic collapse or not; in this case, the expansion would continue
forever. Much more powerful telescopes are operating now than decades ago, there
are space telescopes producing breath-taking pictures, and new windows have been
opened (infrared, radio, X-ray astronomy). As a result, the optimism about our ability
to understand the Universe according to the laws established in the Laboratory has
evaporated gradually. Vera Rubin studied the rotation curves of the nearby Galaxies.
She discovered that the stars in the outskirts rotate faster than they should if they
were attracted by the visible matter. There are also similar problems with Galaxy
clusters and Fritz Zwicky had already proposed the existence of Dark Matter. There
is no agreement about the nature of this stuff, which is actively sought for.

Even more astonishing was the discovery that the expansion actually seems to
accelerate. The accelerated expansion was discovered in 1998, and was quite unex-
pected. Two independent projects, the Supernova Cosmology Project and the High-Z
Supernova Search Team, both used distant type Ia supernovae as standard candles,
hoping to measure a deceleration due to gravity. In summary, very high redshift
supernovae appeared to have a larger luminosity distance than expected from the
Standard Model. This suggests an accelerating Universe for the following reason.
The light has traveled a greater distance in an accelerating Universe, than it would
if the expansion rate were the same as in our neighbourhood. Thus, for the same
redshift, a supernova is more distant in an accelerating Universe, and hence, dimmer,
than in other non-accelerating Universe models. This conclusion restored Λ.
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The cosmological constant does not change the symmetry of the model, thus
the metric tensor remains diagonal. Thus, Λ can be fitted into the above Standard
Model. One must increase the density by Λc2

8πG and decrease the pressure by Λc4

8πG .

So, Λ produces an extra energy, known as dark energy, associated with a negative
pressure.12

In 1968, Zel’dovich proposed an explanation of the cosmological constant Λ in
terms of vacuum energy. The idea of an energy content of vacuum comes fromQuan-
tumMechanics and will be developed in Sect. 16.2. Zel’dovich argued that in Special
Relativity, the energy-momentum tensor of the vacuum should be proportional to ημν

which is a tensor that keeps the same form under Lorentz transformations. Indeed the
vacuum should appear the same in all inertial systems. By the principle of General
Covariance this implies that in General Relativity Tμν must be proportional to gμν

and produce aΛ term in the Einstein equations. In this way, the idea of a dark energy
that becomes more and more dominant as the space grows could find an explana-
tion. At the present time, Cosmologists suppose that the total mass - energy of the
Universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy.
It is embarrassing to admit that nobody is sure about the nature of dark energy and
dark matter; but without them, the physical laws discovered in the laboratory and
successful in the neighbourhood of the solar system appear to fail.

Even the isotropy of the Universe is somewhat paradoxical. This is the so-called
horizon problem.Howcanwe explain the fact that the cosmicmicrowave background
follows Planck’s law, and the temperature is the same (with minor fluctuations) in all
directions? This implies that (1) there was equilibrium during the Big Bang, (2) there
was equilibrium even between parts of the Universe which had not yet exchanged
radiation. Moreover, equilibrium implies maximum entropy, while, according to
Thermodynamics, the entropy of the Universe is increasing. There is also a flatness
problem: why is the Universe (within a few percent) flat? These are questions about
the initial conditions. In 1980 Alan Guth proposed the idea of an inflation field
that should have worked at the beginning of the Universe. This became popular but
has unwanted implications and has been questioned; the inflation field is an ad hoc
assumption without any clear role in Physics. But at any rate, this topic is outside
our scope.

In summary, we can observe only a tiny (probably negligible) part of the Universe,
and the current understanding of the observations is rather poor. Maybe the subject
is already running outside the realm of Physics, maybe it will lead to new Physics.

12However,Λ has a competitor, known as Quintessence. This is thought to be a hypothetical scalar
field; it should provide a dynamic dark energy in the sense that it generally has a density and equation
of state that varies through time and space.

http://dx.doi.org/10.1007/978-3-319-71330-4_16
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Chapter 9
The Wave Function

This theory has many counter-intuitive features, but perhaps the
most amazing aspect is the absolute need for complex numbers,
those that their inventor Girolamo Cardano (1501–1576) called
‘fictitious numbers’.

Among the fundamental constants of Physics, Planck’s1 constant h is an action
[h = energy × time = angular momentum]. It is a tiny action, h ∼ 6, 62619610−34 J
s. Most often, one uses the notation � = h

2π
= 1.05410−34 J s. All the phenomena in

which h is non-negligible are quantum phenomena, while sometimes phenomena in
which the characteristic actions are � h may have classical aspects, which allow for
a simpler description; however all the microscopic mechanisms are fundamentally
quantum, and many phenomena such as magnetism, superfluidity and superconduc-
tivity are just macroscopic quantum phenomena; their quantum mechanical descrip-
tion is far from trivial. Historically, the breakdown of classical Physics (after many
triumphs) was urged by the clear inability of the latter to explain a few quantum
effects that where known by 1900. This breakdown was shocking, because well-
understood laws of Physics that had been validated by experiment in many ways
were seen to lead to wrong conclusions in a class of phenomena quite unexpectedly.

Without h, one cannot understand the stability of atoms. From electromagnetism,
we know that a charge e must irradiate a power

W = d E

dt
= 2

3

e2

c3
a2, (9.1)

1Max Planck (Kiel 1858-Gottinga 1947) German physicist, initiator of Quantum Mechanics, Nobel
for Physics in 1918.
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where E is the energy of the atom, and a is the acceleration; this law explains very well
the working of an antenna. Now let us try to build an atomic model where the electron
makes an orbit of radius r . Substituting a = e2

mr2 , one gets W = d E
dt = 2

3r4 r3
0

e2

c3 , where

r0 = e2

mc2 ∼ 2.8 10−13 cm is the so-called classical radius of the electron. Now, the
atom in a normal state does not radiate, yet the electron feels a force and is accelerated.
Moreover, the electron should fall in the nucleus in a short time. The electrostatic
energy of the atom is E = − e2

2r , so

d E

dt
= −r0mc2

2r2

dr

dt
.

Equating this to W, one finds that r2ṙ = − 4
3 cr2

0 . We can integrate this with the
initial condition r(0) = a0 with the result that r3(t) = a3

0 − 4r2
0 ct. The radius

becomes zero at t = 1.6∗10−11 s. This is in very sharp contrast with the experiment!
Classically, one understands the chemical bond even less. Atoms, molecules, nuclei,
solids, and elementary particle interactions are all quantum effects. Later it became
clear that the quantum theory was needed to understand macroscopic phenomena as
well. Classically, the cohesive energy of metals cannot be explained.

It is easy to see that magnetism would be impossible. This was the result of the
Bohr–van Leeuwen Theorem. The Lorentz force correctly describes the motion of
charges. However, for a classical electron in a magnetic field, the canonical partition
function reads:

Z =
∫

d3x
∫

d3p exp

[
− (px − eH y/c)2 + p2

y + p2
z

2mK B T

]
;

this should be the starting point of description of magnetic effects in solids, but a
trivial shift of the px variable yields

Z = V (2πmK B T )3/2.

The field has disappeared! Thus, classical physics predicts that magnetism does not
exist, in sharp contrast with the experiment. Superconductivity and superfluidity are
also macroscopic quantum effects. By contrast, the predictions of Quantum Theory
are extremely accurate. In no other field has one gained a similar degree of knowl-
edge; in some atomic phenomena, like the Lamb shift,10 digits precision has been
achieved.

This book is devoted to the non-relativistic version of the theory, although the
relativistic one is well known. We shall be able to understand many important facts
in a semi-quantitative fashion.
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9.1 Corpuscles and Waves in Classical Physics

In classical physics, there are two types of basic objects, corpuscles and waves. The
wave and particle concepts are well distinct. A corpuscle is a particle that obeys the
canonical equations and follows a deterministic trajectory; if there is no force, it goes
straight, with constant speed. The waves are described as solutions of a well-defined
linear partial differential equation; they may be propagating in a elastic medium,
or appear as continuous fields. In the presence of obstacles, they give rise to phe-
nomena of interference and diffraction. Newton thought that light was made of
corpuscles. This idea was natural in view of Geometrical Optics, based on light rays.
This knowledge already enabled the building of powerful telescopes and microscopes
that produced extraordinary progress. But at the half point of the nineteenths century,
this type of geometrical optics was recognised as a limiting case of physical optics,
that is, Maxwell’s theory. It holds when all material objects are large compared
to the wave length. One phenomenon that the corpuscular model of Newton could
not explain is diffraction. Actually, it was known since 1665, when an Italian sci-
entist Francesco Maria Grimaldi, a Jesuit priest, discovered that ‘Light propagates
or spreads not only in a straight line, by refraction, and by reflection, but also by a
somewhat different fourth way: by diffraction.’

A monochromatic plane wave of wave vector
−→
k = (k, 0, 0) parallel to the x axis

impinges on a screen with a slit for y ∈ (−a, a) and then exposes a photographic
plate. To fix ideas, we take a wave polarized along the z axis with electric field

E = (Ex , Ey, Ez) = Re(0, 0, Eeikx ). (9.2)

The frequency and polarization of the field do not change. However, the beam under-
goes a Fraunhofer diffraction. This is borne out by the Maxwell equations and is
evident for ka of order 1. On the photographic plate, no sharp picture of the slit
appears, but rather the intensity is a function I (θ) of the angle of deflection:

d I ∝ sin2(kaθ)

(kaθ)2
dθ.

This function is reminiscent of a representation (3.7) of Dirac’s δ; the narrower
the slit, the broader the diffraction pattern. Beyond the screen, the wave vector of
the diffracted field makes a small angle θ with the x axis; actually, it has got a y
component |k sin(θ)| ∼ kθ (Fig. 9.1).

Classical Physics explains these facts very well. If the plane incident wave has
constant amplitude E (independent of y), the part of the front cut off by the slit must
depend on y as θ(a2 − y2).

http://dx.doi.org/10.1007/978-3-319-71330-4_3
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Fig. 9.1 Graph of
sin2(3x)/x2 for x ∈ (−3 3)
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Fourier’s theorem gives the wave packet representation

θ(a2 − y2) = 1

π

∫ ∞

−∞
dqe−iqy sin(qa)

q
.

Letting E → Eθ(a2 − y2) in Eq. (9.2) one obtains

Ez = E
∫

dqei[kx−qy] sin(qa)

πq
.

A point of the plate at an angle θ 	 1 receives a component

Ez ∝ ei[kx−kθy] sin(kθa)

πkθ

with a deflected wave vector, q
k = tan θ ∼ θ.

The intensity which is measured on the plate goes with the square of the field.
Note carefully that

E is an amplitude, the intensity is proportional to |E |2,

Thus, it is clear that diffraction is a property of waves, and the amplitudes, not the
intensities, are additive.

9.2 Dualism

If the intensity of the light is very weak, something happens that is not expected by
Classical Physics. The pixels in the plate are exposed or not exposed in a yes or no
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fashion: there is no half measure. Higher and lower intensity of the radiation just
changes the probability of each pixel of being exposed.

Max Planck introduced h in 1900 in order to fix the black body theory, affected by
the ultraviolet catastrophe. Then, in 1905 Albert Einstein understood that the light
is emitted and absorbed as quanta. This implies that it consists of quantized photons
carrying each a quantized energy E = hν = �ω. This interpretation was forced by
the photoelectric effect: experiments showed that the radiation picks electrons from
a surface if its frequency is above a threshold, which depends on the material. The
intensity of the electron current above the threshold is proportional to the intensity
of the radiation. The relation between frequency and wavevector is ω = ck, and the
relation between energy and momentum is E = cp for an electromagnetic wave.
As a result of energy quantization, the photon momentum is also quantized and the
momentum carried by a photon having wave vector k is p = �k. We must accept the
fact that a photon propagates as a wave, yet it is always absorbed as a corpuscle.

Then, in 1924, the French Duke Louis-Victor De Broglie2 suggested that in
analogy with the dualism between photons and waves, particles like an electron
should also correspond to a wave function ψ. Most remarkably, he also argued that
ψ must be an unobservabe, complex function

ψ−→p ,E (
−→x , t) ≈ exp

[
i(−→p · −→x − E(

−→p )t)

�

]
, (9.3)

with −→p = �
−→
k as the electron momentum. The square modulus is proportional to

the intensity of the electron beam and to the probability of detecting the electron. The
introduction of a complex quantity that is not observable but contains the physical
information was a wonderful, bold flash of insight. In 1927, Davisson–Germer at Bell
Labs USA confirmed De Broglie’s hypothesis. They fired electrons at a crystalline Ni
target, and the resulting diffraction pattern was found to match the values predicted
by the De Broglie formula. Since the late ’50s, this is a technique known as Low
Energy Electron Diffraction, used for the study of surfaces and their excitations. Here
I use a more direct experiment to show the effect. This is feasible with the current
technology but was impossible to do at the time (Fig. 9.2).

A beam of electrons of momentump parallel to the x axis impinges on a screen and
goes through a slit for y ∈ (−a, a); the electrons meet a photographic plate (or better
yet, a modern detector). The beam undergoes a Fraunhofer diffraction.. The intensity
at a small angle θ from the x direction turns out to go like d I = sin2(kaθ)

(kaθ)2 dθ. This
is not expected classically, but agrees with the De Broglie hypothesis (and indeed,

no diffraction is seen if ka � 1). Again, if the incident wave is è ψ ∝ ei
−→
k ·−→r , with

initial wave vector
−→
k = (k, 0, 0), the transmitted wave is ψ ∝ ∫

dqei[kx−qy] sin(qa)

πq .
For small angles, |q| ≈ kθ; evidently,

2De Broglie (1892–1987) won the Nobel Prize in 1929 for the very remarkable prediction about
the existence and the form of a complex wave function for a free particle in a thesis work in 1924.
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Fig. 9.2 Diffraction of an electron beam through a slit: the beam from gun C arrives at P in the
detector plane (photographic plate, Geiger, etc.). The z axis is orthogonal to the plane of the figure

ψ is an amplitude, and the intensity goes like |ψ|2.

The wave function is a probability amplitude. In a one-dimensional problem,
we may be considering a detection of a particle at some location x; the detection
experiment can be done many times using a beam of particles; otherwise, we may
do a series of experiments involving just one particle, like an electron in an H atom,
but repeating the experiment on many samples. In both instances, it makes sense if
we ask for the probability that the detection occurs in a volume V . This is given by

PV =
∫

V
d3x |�(x, t)|2,

where I have included a possible dependence on the time t because the system could
evolve. In other words,

ρ(x, t) = |ψ(x, t)|2 (9.4)

is a probability density that must be normalized to 1 by

∫
dxρ(x, t) ≡ 1,

integrating over all space, since the particle must be somewhere.
The quantum theory does not propose a compromise between the conflicting

views of waves and particles. It does not attempt any pun. It makes extremely precise
predictions based on a rigorous mathematical apparatus which has the precedence
over any argument. Wave-like diffraction and particle-like detection take place in the
same experiment (Fig. 9.3).



9.3 Which Way Did the Electron Pass Through? 173

Fig. 9.3 The double slit
experiment: the electron
beam from gun C arrives to P
on the photographic plate
through two paths. The
lengths are l1 = a + b and
l2 = c + d. An interference
path is seen on the plate

9.3 Which Way Did the Electron Pass Through?

The double slit experiment with electrons (Fig. 24.3) is an even more striking display
of the wave-like properties of matter particles. The intensity is proportional to

1 + cos[k(l1 − l2)],

where l1, l2 are the path lengths. When one of the slits is closed, the interference
pattern between the two waves disappears, but one observes the diffraction pattern
of the other slit. This is like the double slit experiment familiar in classical physical
optics, but cannot be understood in terms of a beam of corpuscles. Moreover, the
intensity of the electron beam can be made so low that in each moment, it is very
unlikely that more than one electron is present. Then, the experiment must be con-
tinued for a long time, but when enough electrons reach the plate, the same results as
before are obtained. Thus, the electron must somehow interfere with itself! Moreover
one can never tell which slit a given electron went through; all attempts to modify
the experiment and determine the electron trajectory destroy the interference. Cur-
rently,3 double slit experiments are also done with atoms; often the double slit is not
material, but is obtained by using laser beams.

9.3.1 Bohm-Aharonov Effect

In 1959, Bohm and Aharonov proposed a modification of the double slit experiment,
as shown in Fig. 9.4.

The flux tube is a solenoid that produces a magnetic field inside a cylinder where
the electrons cannot enter, but the field is screened, for instance, by coating the
solenoid with a superconducting film. Therefore, the field outside vanishes and cannot

3See for instance A. Miffre et al., ar Xiv/cond − mat, 0506106.

http://dx.doi.org/10.1007/978-3-319-71330-4_24
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Fig. 9.4 The double slit
experiment modified by a
flux tube (round dot). The
interference at P depends on
the flux collected within the
path abdc, even if there is no
magnetic field outside the
flux tube

produce any Lorentz force; classically, no effect is expected. Nevertheless, there is
a magnetic flux though a surface bounded by the path abdc. This induces a phase
difference between the wave function along the path ab and the wave function along
cd, which shifts the interference path on the screen (see Section 15.2).

9.3.2 Experiments by Deutsch on Photons

New enlightening experiments using photons have been performed by D. Deutsch
et al.4 The light from source S is split by the half silvered mirror SST (Fig. 9.5).
Classically, detectors A and B should receive half of the intensity, as predicted by
the Maxwell equations, and this happens if the intensity is such that the number
of photons in the system at any given time is large. However one can decrease the
intensity to one quantum per second, then no more than one photon is around. Then,
the photon ends up either in A or in B, but with equal probability, so the classical
prediction is verified only on average when many experiments have been conducted.
But what happens each time?

It is natural to suppose that once in SST, the photon makes a random choice. Is that
true? One can find an answer through the second experiment in Fig. 9.5, done with
one photon at a time. The geometry is such that there is constructive interference in
A and destructive interference in B. As a matter of fact, the lonely photon always
goes towards A. We must conclude that 1) there is no random choice, and 2) the
particle sommehow explores both paths and interferes with itself! If one of the paths
is slightly modified, the detector in B starts counting photons. This is really striking.
At any rate, the quantum behavior supersedes the classical description at low enough
intensity.

4See for instance David Deutsch, Arthur Ekert and Rossella Lupacchini, math.HO/9911150.

http://dx.doi.org/10.1007/978-3-319-71330-4_15
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Exp eriment 2

Fig. 9.5 experiment 1: by a semi-transparent mirror, the photon is sent to A or B with equal
frequency. Experiment 2: By using a double semi-transparent mirror and two ordinary mirrors the
photon is sent to A

The next question is: what is the photon wave function? The classical result at
high intensity is correctly predicted by the Maxwell equations. In the Lorentz gauge,
the vector potential

−→
A obeys the wave equation; from

−→
A , one can derive the electric

field
−→
E = ∂

−→
A

∂t , and the light intensity is proportional to
−→
E 2. There is a partial wave

in both paths, and all the intensity goes to A if there is constructive interference in
A and destructive interference in B.

Moreover, the wave function must not be an observable quantity. This suggests
the correct answer: even at low intensity, the wave equation is useful and the square
of

−→
A is related to the probability of detecting the photon. Maxwell’s equations

survive unharmed, but must be interpreted in a new way. This interpretation is also
consistent with the first experiment of Fig. 9.5. A further implication is that each
species of particle has its own wave function. But a further question arises naturally:
how can we predict in the first experiment where the next photon will go? Here, the
answer is: in no way! A similar experiment has been performed5 with neutrons.

9.3.3 Plane Wave, Superposition Principle and Operators

A plane monochromatic electromagnetic wave was interpreted by Planck as a beam
of photons, each with the same frequency, energy and momentum. The De Broglie
analogy suggests that the incident electron wave function in a double slit experiment
is the more accurate description of the propagation of what classically would be a
train of electrons of equal speed moving like a series of gunshots. The analogy is
admittedly coarse, since in the case of an electromagnetic wave, we need a four-
potential as a wave function capable of containing all the information, while in
the case of particles, we might expect one component, furthermore a complex one.
Later, we shall find that even in the non-relativistic theory a single component is not

5M. Iannuzzi et al., Physical Review Letters (2006).
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enough, because of spin. However, for simplicity, we start with the single-component
De Broglie wave of the form:

ψ−→p ,E (
−→x , t) ≈ exp

[
i(−→p · −→x − E(

−→p )t)

�

]
, (9.5)

with −→p = �
−→
k , E = �ω. In the electromagnetic case, the light intensity goes with

the square of the field. By analogy, the probability of detecting an electron in −→x , t
(that is, at −→x at time t) must be proportional to |ψ−→p ,E (

−→x , t)|2. Using (9.5), this is
constant, so actually we have no idea of where the electrons are. If the reader finds
that this information looks very incomplete, compared to what one would deem a
full classical description, I cannot deny that this is true.

By analogy with electromagnetism (in vacuo), one should very much hope that the
theory is linear, since nonlinear phenomena are much more complicated to describe.
People naturally tried with a linear theory and it worked: the superposition principle
is valid, and a linear combination of wave functions ia a possible wave function.

A wave function ψ−→p ,E represents particles prepared in a state with well-defined
momentum, so it contains the information that the momentum is p. How can we
get the momentum p out of it by means of a linear operation? A logarithm, cannot
work, because of the linearity constraint. However we can introduce the momentum
operator −→p op = (−i�)

−→∇ , (9.6)

which gives us −→p opψ−→p ,E (x) = −→p ψ−→p ,E (x). (9.7)

Mathematically, this is a well-known equation, an eigenvalue equation: the proper
statement is that ψ−→p ,E is an eigenfunction of the momentum operator and −→p is
the corresponding eigenvalue. This complex function represents a particle moving
in the direction of −→p . We can get a real wave function by summing ψ−→p ,E (

−→x , t)
with ψ−−→p ,E (

−→x , t). The opposite currents sum to zero. We shall see that a real wave
function cannot carry a current.

It is time to better specify what information can be extracted from ψ. Sometimes,
broady speaking, we say that ψ describes the particle. Actually, the average over
the wave function tells us about the result of a series of many measurement on the
sample containing many particles, rather than the properties of a single particle. One
can choose experimental conditions such that only one particle is present. Then, ψ
cannot predict the position of the particle. But if the single-particle experiment is
repeated many times, then ψ can be used to make statistical predictions. In a plane
wave state, the position of the particles is quite undetermined. A general state is a
superposition called a wave packet6:

6The wave function must always have a Fourier transform in the space of ordinary functions or in
the space of distributions.
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ψ(
−→x , t) = 1

(2π)3/2

∫
d−→p g(

−→p ) exp

[
i(−→p · −→x − E(

−→p )t)

�

]
. (9.8)

(The 1
(2π)3/2 factor will be explained below.) Now, the position of the packet must be

computed as a statistical mean using the modified wave ψ(
−→x , t):

<
−→x >=

∫
d−→x −→x |ψ(

−→x , t)|2 =
∫

d−→x ψ(
−→x , t)∗−→x ψ(

−→x , t). (9.9)

Here, g(
−→p ) is a probability amplitude (its square modulus is the probability) that

a momentum measurement yields −→p . In effects, g(
−→p ) is the wave function in the

momentum representation.
If g(

−→p ) is peaked around −→p 0, there is a large uncertainty about its location. At
the limit, when the momentum is sharply defined, we are back to the De Broglie
wave.

The information contained in g(p, t) is equivalent to the knowledge of ψ(x), and
we can treat g(p, t) as a wave function in the momentum representation.

Problem 24 Prove that

<
−→p >=

∫
d−→p −→p |g(

−→p )|2; (9.10)

yields the same result as

∫
d−→x ψ(

−→x , t)∗(−i�)
−→∇ ψ(

−→x , t) =<
−→p > . (9.11)

Solution 24

−i�∇ψ(
−→x , t) = 1

(2π)3/2

∫
d−→p g(

−→p )
−→p exp

[
i(−→p · −→x − E(

−→p )t)

�

]
,

and from (9.8) we find that

ψ(
−→x , t)∗ = 1

(2π)3/2

∫
d
−→
p′ g∗(

−→
p′ ) exp

[
−i(

−→
p′ · −→x − E(

−→
p′ )t)

�

]
. (9.12)

Set up the integral (9.11) and integrate over d−→x , using

∫
d−→x ei[−→p ′−−→p ]·−→x = (2π)3δ(−→p − −→p ′).

The result is
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∫
d−→x ψ(

−→x , t)∗(−i�)
−→∇ ψ(

−→x , t) =
∫

d−→p d
−→
p′ δ(−→p − −→

p′ )g∗(
−→
p′ )g(

−→p )
−→p ,

which is equivalent to (9.10). We see that we needed the factor 1
(2π)3/2 introduced in

(9.8).

This example shows how the average momentum in the coordinate representation
ψ(x) is obtained by the momentum operator introduced in (9.6),

−→p op = (−i�)
−→∇ .

The classical variables become quantum operators; the way the operators are
written depends on the representation. We have already seen that when acting on
a ψ(x), the correspondence is −→x → −→x op = x,

−→p → −→p op. In general, if A is a
physical quantity (that is something that can be measured) we call it an observable .
There are quantum observables (like the spin of electrons, the lepton number and the
flavour of quarks) that do not correspond to classical variables. For each observable,
there is an operator Â such that

< A >=
∫

d−→x ψ(
−→x , t)∗ Â ψ(

−→x , t)

is the average value of many measurements. The De Broglie wave (9, 5) is an example
of a general rule: the eigenfunction of Â with eigenvalue a is denoted by ψa; if the
physical magnitude corresponding to Â is measured, the result is granted to be the
eigenvalue a. It also gives a hint as how to find the operator of kinetic energy T̂ = p2

2m .

Similarly, the angular momentum operator L̂ = r ∧ p, which depend on coordinate
and momenta is obtained letting p become (−i�)

−→∇ . However, in general caution
is necessary in transforming classical observables into operators, since quantum
operators may fail to commute, as we shall see next.

Commutator

Using a test function φ(x) one can observe that the commutator [p, x]−φ(x) ≡
(px − xp)φ(x) = −i�φ(x), does not vanish. The operators x̂, p̂ do not commute:

[p, x]− = px − xp = −i�.

This fundamental commutation rule replaces the classical fundamental Poisson
bracket. We shall see that this analogy is profound.

Example 5
(x − i p)(x + i p) = x2 + p2 + �.
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9.4 The Copenhagen Interpretation

Quantum Mechanics is a physical theory, and its purpose is the description of Nature
and the prediction of the outcome of experiments. The theory is so successful that
everyone believes it must be true. It allows us to predict the results of all experiments
done so far in particle, nuclear, atomic, molecular and condensed matter Physics
so well that no failure of Quantum Mechanics has ever been reported. The only
exception is that nobody knows how to reconcile it with General Relativity.

The fundamental laws of Nature are so different from the picture of reality it
that we form in the everyday life that we feel confused. The great Richard Feynman
declared that nobody understands Quantum Mechanics. It is not just the random
character of the results of some measurements; that is a fact, which requires a statis-
tical treatment. The trouble is that everyone would like to infer from the experimental
results a cartoon of what really happens at the microscopic level, and this requires a
totally new way of thinking about particles and interactions. In Physics, the accuracy
of measurements and the quantitative predictions of the theories are of fundamental
importance, but qualitative arguments are equally essential. This is what we mean
by interpretation.

The use of probability theory had appeared in Theoretical Physics when Gibbs
invented Statistical Mechanics. Here, the meaning is quite different, and has nothing
to do with ensemble averages, while the Temperature is not involved.7 In Classical
Physics we need statistics when we have incomplete knowledge of a system. Knowl-
edge of the internal state of a slot machine, enables us to predict the right moment
for inserting the coin; since the internal state is secret, one can only speak about
probability. Is it possible to go beyond the bizarre rules of the game and fill the gap
between what appears from the measurements and the underlying reality?

In the Copenhagen interpretation, proposed by Niels Bohr and Werner Heisenberg
in the ’20s, the reply to the last question is a radical no. The wave function ψ
contains a statistical description, which, however is a full description of reality. The
particle does not possess such properties as a classical trajectory. The only values
that can be given to observables are those of operators for which ψ happens to be
an eigenfunction. The micro world is so unusual that a particle can have many non-
classical properties, including spin, isospin, parity, strangeness, color charge; on the
other hand, particles lack familiar properties like a sharply defined trajectory. In the
case of the slot machine, the missing information is hidden, but the precise position
of the electron prior to measurement is fuzzy.

Suppose somebody wants to measure the electron-proton distance in the normal
state of the H atom, by sending fast charged particles and measuring the change of
their momentum, which depends on the field they come across. The measurement on

7Indeed there is a link between Quantum and Statistical Mechanics, which are unified by now e.g.
in the Keldysh theory. This exploits the analogy between the Boltzmann factor and the exponential
exp −i Et

�
which appears e.g. in the De Broglie wave and in stationary states (see below). However

conceptually these remain quite different exponentials.
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a single H atom can give any value. Preparing many atoms in the same conditions
and repeating the measurement many times, one gets a well-defined distribution of
electron-proton separations. The result can be interpreted as a |ψ(

−→r )|2 and allows
us to calculate the statistical average 〈r〉 = ∫ |ψ(

−→r )|2d3r. This is not the same as
repeating the measurement many times on the same atom, because the measurement
itself perturbs the system, while classically, this kind of complication is assumed
to be negligible. More precisely, the measurement of an observable Ô yielding the
result o leaves the system in an eigenstate ψo of Ô with exactly that eigenvalue.8

In other words, the wave function has collapsed to ψo. The collapse of the wave
function is one of the most striking predictions of Quantum Mechanics and leads,
among others, to paradoxes to be discussed in Chap. 27.

There are also quantities that are sharply defined under some circumstances. If
a sample of H atoms in the ground state is used to measure the binding energy, the
result is about 13.59 eV and is always the same within the experimental error.

Using Eq. (9.4), one obtains the mean value of any function f (x) defined by

〈 f (x)〉 =
∫ ∞

−∞
dxρ(x, t) f (x).

This is commonly referred to as the expectation value, even if everybody understands
that this is a misnomer. For instance, a probability distribution symmetric around x0

could vanish right there, so x0 would be unattainable but still the expectation value.
The average position at time t is

〈x(t)〉 =
∫ ∞

−∞
dxρ(x, t)x,

which implies

〈{x − 〈x〉}〉 =
∫ ∞

−∞
dxρ(x, t) {x − 〈x〉} = 0.

As in every statistical treatment, the width of the distribution is given by the standard
deviation σ defined by

σ2 = 〈{x − 〈x〉}2〉 =
∫ ∞

−∞
dxρ(x, t) {x − 〈x〉}2 .

One finds that
σ2 = 〈x2〉 − 〈x〉2,

where

8If the measurement is repeated afterwards the system is found in a state ψo(t) that is evolved
from ψo, and if Ô commutes with the Hamiltonian, the eigenvalue is still o. This statement may be
somewhat obscure to the reader but will be clear after studying the evolution in the next chapter.

http://dx.doi.org/10.1007/978-3-319-71330-4_27
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〈x2〉 =
∫ ∞

−∞
dxρ(x, t)x2.

The wave function is complex and can be taken to be real only in special cases.
This is far from obvious since the measurements always yield real results. However
we have seen that the De Broglie wave is complex, and is the eigenfunction of
momentum, which is itself a complex operator. We shall see that the phase is crucial
for angular momentum eigenstates, for the existence of a current, for enabling a
change of gauge and a change of reference in a Galileo transformation; later on, we
shall discover more subtle ways the phase is necessary (topological phase). On the
other hand, the wave function, like the electromagnetic potentials, is not observable.

In simple systems like a particle in a quantum well, one measurement of energy
can tell us which one is the state. In general, the task of labelling a system with a
quantum state can be demanding. Complex systems with several degrees of freedom
may require a series of measurements. How many quantities and which quantities
are needed? This complicated issue is studied by Quantum Tomography.

9.4.1 The Bohm Formulation of Quantum Theory

Moreover, David Bohm, in 1952, has proposed an alternative interpretation of Quan-
tum Mechanics in which a particle obeys Classical Mechanics but is acted upon by
a quantum potential. The wave function is written in the form

ψ = R exp

(
i S

�

)
, (9.13)

with R ≥ 0 and real action S; for one particle, the action is given by the classical
Hamilton–Jacobi equation with an additional non-local quantum potential

U = −
∑

k

�
2

2m

∇2 R

R
. (9.14)

This nonlinear framework determines particle trajectories. The theory, which has
also been formulated in the many-particle case, is considered as an alternative inter-
pretation of Quantum Theory. It gives the same physical results. It is non-local and
highly non-linear, and this is the price to pay to keep a strict analogy with Classical
Mechanics.
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9.5 Quantum Eraser Experiments and Delayed Choice
Experiments

In double-slit experiments, the interference pattern vanishes if, by the use of light
or by other means, one can in principle detect which slit the particle passes, but
whenever this information is erased the interference pattern returns. There are other
ways to study the interplay of particle-like and wave-like properties. Let us go back
to Sect. 9.3.2 and to Fig. 9.5. In Experiment 1, a photon arriving from SST to A
comes from the vertical path, and a photon hitting B comes from the horizontal path;
in both cases, it behaves as a particle, and there is no interference. Experiment 2
shows interference: by changing the optical paths, one modulates the intensity of
the light in both detectors. John Wheeler noticed some interesting implications of
this experiment. In the latter case, the wave properties are evident, which implies
that the photon goes both ways. In some sense, the photon behaves as a particle
or as a wave depending on the presence or absence of the second beam splitter.
One can say that by introducing the second beam splitter, the path information has
been erased. Erasing produces interference phenomena at detection screens A and
B positioned just beyond each exit port, where the count rate depends on the optical
paths. However, it takes time to go from S to A or B. What happens if the second
beam splitter is inserted into the left panel (or removed from the right panel) while
the photon is in flight?

Experiment says that when the second beam splitter is present, the photon behaves
as a wave even if it is inserted during the flight; if it is removed during the flight the
photon behaves as a particle even if it must initially have started as a wave. Some
people think that it is possible to change the decision of the photon in a retroactive
way. This is actually an upsetting conclusion. A cosmic version of the experiment
is even more impressing. Multiple images of a quasar are produced in the field of
a Galaxy by gravitational lensing (Sect. 8.7). One can orient a telescope in such a
way that only one image is visible; in this case, only the photons that according to
one interpretation decided to travel as particles can contribute (left part of Fig. 9.6.
However one can also produce an interference pattern out of two images (right part
of Fig. 9.6) and in this case the photons must have decided to travel as a wave. Is
it possible that the experimental arrangement on Earth reverses a decision made
millions of years ago?

The situation is clarified by an enlightening paper published online by David Eller-
man, entitled: “A Common Fallacy in Quantum Mechanics: Why Delayed Choice
Experiments do NOT Imply Retrocausality”. Essentially, the argument is that the
photons do not have to decide their mode of propagation (particle-like or wave-like).
Rather, let us go back to Fig. 9.5: the wave functions are a quantum superposition
of propagation along the vertical path, propagation along the horizontal path and
propagation along both paths; it is the choice of the method of detection that makes
the wave function collapse in a particular way. In this way, the upsetting perspective
of a violation of causality and/or retrocausality is removed.

http://dx.doi.org/10.1007/978-3-319-71330-4_8
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Fig. 9.6 Left: only one of
the images of the quasar
enters the telescope. Right:
collecting both left and right
images of the quasar and
superposing them, we erase
the path information and
produce an interference
pattern

9.5.1 Is the Interpretation a Closed Issue?

There are still subtle problems, not chitchat but conceptual problems, that could
lead to observable consequences, and thus concern Science. Einstein thought that
the theory is not complete and refused the use of statistical means (his motto God
does not play dice is famous). The developments of his ideas, the coexistence with
relativity and some aspects of the problem will be discussed later.

Among the obscure problems, the border between classical and quantum physics
stands out, and the issue is involved. Superfluidity is a macroscopic quantum phe-
nomenon whereby liquid He creeps up the walls of a cup. Superconductivity is a
macroscopic quantum phenomenon whereby trains are levitated. Magnetism is a
purely quantum effect due to electron correlation. So, it is not just a matter of size.
The Schrödinger’s cat is a well-known riddle. An atom can be prepared in a mixed
state, or superposition ψ = c1ψ1 + c2ψ2, where c1, c2 are complex numbers and
ψ1,ψ2 orthogonal eigenfunctions of some observable Â corresponding to eigenval-
ues a1, a2. A measurement of A collapses ψ, and the system must fall in one of the
eigenvalues. Suppose the cat is closed for an hour in a box with a small quantity of
a radioactive element, tailored in such a way that there is a 50 per cent chance that
a nucleus decays in one hour. An infernal apparatus in the case of decay poisons
the poor cat. Is this a way of preparing a fifty-fifty superposition of a live cat and
dead cat, until the box is opened and the cat is observed? (Of course in order to
assign a significance to the wave function one should prepare a large number of cats
and infernal machines.) It is clear that Quantum Mechanics does not describe all the
reality, but just says what one can tell on the basis of a specific experiment; there
is no paradox in the use of probability, and if the cat were replaced by a two-state
quantum system, there would be no paradox. One problem is that we feel that the
cat should be treated by classical probability. Where is the border between classical
and quantum? The second problem is that the observer has a special role in this
story, yet the observer is a part of reality, which remains in the shadow. Could the
cat be an observer? In 2012, the Nobel Prize was awarded to Serge Haroche and
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David J. Wineland for experimental studies in the field of Quantum Optics in which
systems consisting of atoms and photons were kept 50 ms ia a state of quantum
superposition. In a sense, such systems are Schrödinger cats. After 50 ms, due to
the interaction with the environment decoherence occurs, which means, a classical
description prevails. Such studies could pave the way to a quantum computer.



Chapter 10
The Eigenvalue Equation and the Evolution
Operator

It is a strange theory that predicts particles that interfere with
themselves and propagate through forbidden regions. But that is
just what happens in reality.

The operators that represent variables of classical dynamics are built by analogy with
classical analogues.1 Sometimes, there are complications due to the fact that some
operators fail to commute; such cases will be noted below. Therefore, for the simple
case of one particle in a potential,

Ĥ = − �
2

2m
∇2 + V (x̂) (10.1)

is the Hamiltonian operator. By the same criterion, one can write down the Hamil-
tonian operator for systems of particles. The first term H = p2

2m is the kinetic energy
operators, which by itself has the eigenvalue equation

Ĥψ−→p ,E = Hψ−→p ,E ; (10.2)

the eigenfunctions are just the De Broglie waves, which have the known property

−̂→p ψ−→p ,E = −→p ψ−→p ,E . (10.3)

1Since the classical description, as we know, can be changed by canonical transformation, this
statement implies that in Quantum Mechanics, we must enjoy the same freedom. We shall see later
how this arises.

© Springer International Publishing AG, part of Springer Nature 2018
M. Cini, Elements of Classical and Quantum Physics,
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The eigenfunctions of (10.1) depend on the potential V , and we shall see several
examples. Inspired by the De Broglie wave, where the energy is at the exponent,
Schrödinger decided that the energy operator Ê must be

Ê = i�
∂

∂t
. (10.4)

Indeed, Ê , acting on ψE , yields

Êψ−→p ,E = Eψ−→p ,E . (10.5)

In time-independent problems, the energymust be conserved and classically H = E .
Schrödinger proposed that

Ĥψ = Êψ. (10.6)

Actually, the Schrödinger equation (10.6) is one of the most important equations
of history, and describes the evolution of single-particle and many-particle systems.
It remains valid also for problems which are not stationary; actually it dictates the
evolution of all states. If H is time-independent, we may seek wave function with
sharp energy that are eigenstates of both H and Ê . The above sentence is not a
derivation, since a general theory cannot be deduced from a special case, but a
heuristic argument.

For a particle in a (possibly time-dependent) potential V (x, t) in one space dimen-
sion, one must solve this linear partial differential equation:

[
p̂2

2m
+ V (x̂, t)

]
ψ(x, t) = i�

∂

∂t
ψ(x, t), (10.7)

where p̂ = −i� d
dx ; the extension to 3 dimensions is immediate, with p̂ → −i∇̄.

It is common to speak about waves and wave mechanics, but the Schrödinger
equation (often referred to as the S.E.) is no wave equation; actually it becomes a
diffusion equation after the transformation t → iτ .

The De Broglie plane wave (9.3) solves the Schrödinger equation for V = 0.
Note that ψ−−→p ,E has the same energy as ψ−→p ,E , so any linear combination of the two
still has energy E .

It proves to be an excellent idea to introduce the time evolution operator Û (t, t ′)
such that

ψ(x, t) = Û (t, t ′)ψ(x, t ′); (10.8)

the evolution operator then obeys

[
p̂2

2m
+ V (x̂, t)

]
U (t, t ′) = i�

∂

∂t
U (t, t ′). (10.9)

http://dx.doi.org/10.1007/978-3-319-71330-4_9
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Perhaps, this way to rephrase the problem in terms of operator does not immediately
appear to be a clever idea; it proves very useful in the development of the theory, since
Û has several interesting properties that have been exploited with much ingenuity.
To start with, the formal solution of Equation (10.9)

U (t, t ′) = 1 − i

�

∫ t

0
H(t1)U (t1, t) (10.10)

lends itself to an iterative expansion. The so-called Group property

U (t, ta)U (ta, t
′) = U (t, t ′) (10.11)

which is obviously true for any ta , is the starting point of the Path Integral formalism,
as I show below (Sect. 15.2). For time independent problems, one can write

U (t, t ′) = exp

[
−i

H(t − t ′)
�

]
. (10.12)

When ψ(x̂, t = 0) is known, (10.7) determines its evolution in the future and in the
past. Linearity implies the superposition principle. Equation (10.6) is second-order
in the space derivatives and first-order in time, so it breaks the principle of Relativity.
However, when relativistic effects are important, it lends itself to generalizations
(Klein–Gordon equation, Dirac equation) that work extremely well. Already in the
present form, it explains a lot of phenomena. The equation can be used for electrons,
provided that spin does not enter into play.

Potential Wall

In one space dimension, one readily solves the problemwith a potential wall V (x) =
∞, x < 0, V (x) = 0, x > 0, with the condition ψE (x, t) = 0, x < 0;

ψE (x, t) ≈ sin(kx) exp

[−i E(p)t

�

]
, p = �k. (10.13)

This wave function represents an electron beam fired against a potential wall. The
particles bounce, and there is a wave2 with momentum p and a reflected wave with
momentum −p. By the interference between incident and reflected waves, the wave
function vanishes for kx multiple of π. The particles pass through such points, but
cannot be detected there! The particles propagate as waves, and no corpuscles then
exist; when the particles are detected somewhere the wave does not exist any more.

2By the Euler formula, sin(α) = eiα−e−iα

2i .

http://dx.doi.org/10.1007/978-3-319-71330-4_15
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10.1 Stationary State Equation and Its Resolvent

Any state ψ(x, t)with a well defined energy E is eigenstate of the energy operator Ê

Êψ(x, t) = Eψ(x, t),

so its time-dependence is through the phase factor e−i Et
� . The probability density of

such a state is time-independent. Therefore the energy eigenstates are called station-
ary states.

Substituting
ψ(x, t) = ψ(x)e−i Et

� , (10.14)

into (10.7), we separate the variables. The time-independent equation for ψ(x) reads
as:

Ĥψ(x) = Eψ(x). (10.15)

For a particle which is known to be at x at time 0, the amplitude to find it at y at time
t is 〈y|Û (t)|x〉, where Û (t) is the evolution operator defined in the last section. The
Fourier transform 〈y| 1

ω−Ĥ
|x〉 can be phrased as the amplitude to go from x to y at

frequency ω, and the resolvent

Ĝ(ω) = 1

ω − Ĥ
, (10.16)

which is closely related to Green’s functions, will be useful later.

10.2 Continuity Equation

The Continuity Equation is well-known from Electromagnetism, where it states the
conservation of charge. The charge density ρ(x, t) and the current density

−→
J (x, t) =

ρ−→v (where −→v is the velocity) obey

∂ρ

∂t
+ ∇−→

J = 0. (10.17)

Integrating over volume V and using the Gauss Theorem,

d

dt

∫
V

ρd3x +
∫
V

∇−→
J d3x = dQ

dt
+

∫
S

−→
J d

−→
S = 0. (10.18)

The change total charge Q in a given volume depends on the flux of current across the
boundary. In the single-particle Schrödinger theory, the relevant probability density is
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ρ(x, t) = |ψ(x, t)|2,

and wemust find the current density J(x, t) associated with it. For charged particles,
these expressions multiplied by the electron charge e naturally represent the charge
and current densities associated with the wave function; again there is the need to
average over many particles or many instances before allowing this correspondence.

In one dimension, the task of obtaining the current density is simplest; multiply
by ψ∗(x) the S.E.

− �
2

2m

d2ψ

dx2
+ V (x, t)ψ = i�

∂ψ

∂t
,

then multiply by ψ the conjugated equation

− �
2

2m

d2ψ∗

dx2
+ V (x, t)ψ∗ = −i�

∂ψ∗

∂t

and subtract: the result is

− �

2m

[
ψ∗ d

2ψ

dx2
− ψ

d2ψ∗

dx2

]
= i

[
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

]
, (10.19)

that is,

− �

2mi

d

dx

[
ψ∗ dψ

dx
− ψ

dψ∗

dx

]
= ∂|ψ|2

∂t
.

Therefore, the probability current density is

J = �

2mi

[
ψ∗ dψ

dx
− ψ

dψ∗

dx

]
. (10.20)

This result looks less unfamiliar if one reasons that J = 1
2m (ψ

∗ pψ + c.c.). Since
the probability of finding the particle becomes 1 if one looks for it everywhere, the
wave function must be normalized to unity:

∫ ∞

−∞
dx |ψ(x, t)|2 = 1. (10.21)

This makes sense provided that the normalization is forever; we shall check that this
is indeed the case provided that the potentials are real; in other words, the evolution
is unitary.

The above is easily extended to three dimensions.

J = �

2mi

[
ψ∗∇ψ − ψ∇ψ∗] . (10.22)
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If ψ is real, the current vanishes. Complex wave functions are needed to describe
transport phenomena.

10.3 Schrödinger and Heisenberg Formulations
of Quantum Mechanics

The matrix mechanics was formulated in 1925 by Werner Heisenberg.3 In the same
year the quantum theory of the Hydrogen atom was proposed by Wolfgang Pauli4 in
a beautiful but complicated applications of Group theory, assuming quantum com-
mutation relations. In 1926 Erwin Schrödinger5 wrote the fundamental paper “Quan-
tisierung als ein Eigenwert Problem” introducing the S.E.

Initially, Schrödinger found the Heisenberg matrix mechanics unconvincing,
while Heisenberg thought that Schrödinger’s theory was rubbish. It did not take
a long time before it became clear that the different formulations gave the same
results because they where mathematically equivalent. Actually, each of them clari-
fied the others. Both are equivalent to Feynman’s Path Integral formulation that will
be presented in Sect. 15.2 below.

3Werner Heisenberg (Würzburg, 1901-München 1976), received Nobel prize in 1932.
4Wolfgang Pauli (Vienna 1900-Zurich 1958) received the Nobel prize in 1945.
5Erwin Schrödinger (Vienna 1887-Vienna 1961) succeeded to Max Planck as professor of Physics
in Berlin in 1927; he won the Nobel Prize in 1933.

http://dx.doi.org/10.1007/978-3-319-71330-4_15


Chapter 11
Particle in One Dimension

Simple cases trigger Intuition.

11.1 Deep Potential Well

One dimensional problems illustrate in simple fashion many aspects of the theory,
and for this reason, every beginner in Quantum Mechanics is traditionally exposed
to them. Some interesting one-particle problems in higher dimensions can be solved
by separation of variables, thereby reducing them to 1d subproblems, and we shall
encounter several examples in other chapters. However, in recent times there have
been important technological developments in nano-devices and low-dimensional
objects (like nano-wires and nano-tubes) that have made these problems much more
directly relevant. In classical physics, a wire is one-dimensional in the limited sense
that its length is many times its diameter. However, in Quantum Mechanics, the
low dimensionality of thin films and 1d objects has a much stronger meaning. The
next problem (deep potential well) shows that the confinement implies quantized
levels divided by gaps that become wider the narrower the well. This implies that at
low enough temperatures, the electrons behave as if the transverse dimensions were
effectively frozen out. In this way, low d problems are no longer academic.

Consider a Schrödinger particle trapped between x = 0 and x = a by the potential

V (x) =

⎧
⎪⎨

⎪⎩

∞ for x < 0,

0 for 0 < x < a,

∞ for x > a.

© Springer International Publishing AG, part of Springer Nature 2018
M. Cini, Elements of Classical and Quantum Physics,
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We must solve
{

− �
2

2m
d2

dx2 ψn(x) = Enψn(x),

ψn(0) = ψn(a) = 0.

The result is
ψn(x) = C sin(χnx), χn = n

π

a
, (11.1)

where n = 1, 2, . . . is an integer quantum number (positive, since negative numbers
give the same solutions). The energy eigenvalues are:

En = π2
�
2

2ma2
n2. (11.2)

Remarks:

1. Classically, themotion in this potential is too stupid to have the status of a problem,
but the quantum version is very interesting. The energy spectrum is discrete.
Natura facit saltus!

2. ψn has n-1 nodes (that is, ψn(x) = 0 has n − 1 roots.) As N grows, λ gets shorter
while E grows.

3. E1 is the ground state, the others are excited states. Classically, the particle could
be somewherewith zero velocity and zero energy. Theminimumquantized energy
is E1 > 0; there is a minimum amount called zero point energy. This is in line
with the uncertainty principleΔxΔp ∼ �, whereΔx is the spread in position and
Δp is the spread in momentum. Since the particle is known to be between x = 0
and x = a, that is Δx ∼ a, the momentum has uncertainty Δp ∼ �

a ; therefore,
Δ

p2

2m ∼ E1.

4. ψn(x) is real and there is no current. One can imagine that the particle bounces
and creates two opposite currents that make up zero.

The normalization constant C is found by the condition

∫ a

0
|ψn(x)|2dx = C2

∫ a

0
dx sin2(χnx) = 1.

Since ∫

dx sin2(x) = x

2
− sin(2x)

4
,

one finds that the normalized eigenfunctions are

ψn(x) =
√
2

a
sin

[
nπ

x

a

]
. (11.3)
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Several remarks are in order:

1. ψn(x) is the sum of opposite momentum plane waves. The mean momentum is:

〈p〉 = 〈ψn(x)|p|ψn(x)〉 =
∫ a

0
ψn(x)(−i�)

d

dx
ψn(x)dx .

This is imaginary. Are we in trouble? No, since 〈p〉 = 0. Indeed, 1
2

∫ a
0 dx d

dx
ψn(x)2 = 0.

2. ψn(x) is eigenfunction of p2 for x inside the well. The same argument applies to
any bound state.

3. {ψn(x)} is just the complete orthonormal set in the interval (0, a) familiar from
the theory of Fourier series.

11.2 Free Particle and Continuum States

It is time to worry about orthonormalization and the physical meaning of the De
Broglie waves, which represent the particle in a perfectlymonochromatic, collimated
beam; in one dimension,

ψk(x, t) = exp[i(kx − ω(k)t)]√
2π

.

11.2.1 Normalization

We encountered the factor 1√
2π

in (9.8), where it comes with the third power because
in that case the problem is 3d (three-dimensional). It is there to ensure the correct
mean value 〈p〉 according to (9.11). The normalization method is different from the
condition

1 =
∫

|ψ(x)|2dx,

which we use for bound states. Indeed, ψk(x, t) is not ∈∈ L2 (square integrable
functions) over the x axis; we normalize it over the δ function:

∫ ∞

−∞
dxψk(x, t)

∗ψk ′(x, t) = δ(k − k ′). (11.4)

However, this is not the only method in use. One can always pretend that the elec-
tron gun and the entire experimental setup is contained in a box of side L; in one
dimension, the plane wave function is

http://dx.doi.org/10.1007/978-3-319-71330-4_9
http://dx.doi.org/10.1007/978-3-319-71330-4_9
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ψk(x, t) = exp[i(kx − ω(k)t)]√
L

.

We choose the discrete k values such that the wave functions are orthogonal over the
Kronecker δ :

δm,n =
{
1, m = n,

0, m 
= n.

This is granted by periodic boundary conditions

eikL = 1; (11.5)

these are verified for a discrete set of k such that

kn = 2πn

L
, n integer,

and the orthogonality is ensured by the theory of Fourier series. If L is large, the box
has no influence on the experiment.

Dirac’s δ yields a formal method for going to the infinite box limit. In 3d, the
volume is V = L3, and

ψk(x, t) = exp[i(kx − ω(k)t)]√
V

.

11.2.2 Phase Velocity

The dispersion law is the law E(p),where E is the kinetic energy and p the momen-
tum; it depends on the particle and also on the theory. For a corpuscle in classical
mechanics, E(p) = p2

2m , but in the relativistic theory, E(p) = √
p2c2 + m2c4; for a

photon, ω = ck. More exotic, anisotropic dispersion laws describe the propagation
of excitations (band electrons, dressed electrons, vibrations called phonons, mixed
photon-vibration modes called polaritons) in condensed matter.

Although Schrödinger’s is not the wave equation, nevertheless, the De Broglie
plane wave is still of the form f (x − vpt), where vp is called the phase velocity. For

a photon it is the actual velocity c, but with the particle dispersion law �ω(k) = p2

2m ,

the phase velocity vp = �
k
2m is half the physical speed v = p

m . In the plane wave the
position is not defined, so the best one can do to measure the speed is to measure p
and divide by m. The velocity operator is, indeed, v = p

m .
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11.2.3 Group Velocity of a Wave Packet

Consider a free particle (V = 0). If we prepare a wave packet at time t = 0

ψ0(x) ≡ ψ(x, 0) =
∫

dkφ(k)eikx , (11.6)

it will evolve at time t to become

ψ(x, t) =
∫ ∞

−∞
dkφ(k)eikxe−iω(k)t ;

to see that, we could plug it into the S.E., but it is enough to observe that each k
component in (11.6) is evolving as a De Broglie wave.

Suppose φ(k) is strongly peaked around k = k0. This is a practically feasible
approximation of a plane wave state. Only k values close to k0 matter; in this neigh-
borhood,

ω(k) ∼ ω(k0) + v(k − k0), v = dω(k)

dk
|k0 . (11.7)

Therefore, to a good approximation,

ψ(x, t) =
∫ ∞

−∞
dkφ(k)eikxe−i[ω(k0)+v(k−k0)...]t ,

that is,

ψ(x, t) ∼ exp[i(−ω(k0)t + k0vt)]
∫
dkφ(k) exp[i(k[x − vt])]

= exp[i(−ω(k0)t + k0vt)]ψ0(x − vt).

The probability density |ψ|2 propagates with the group velocity v, which is therefore
the closest approximation to the classical behavior.

Continuing the expansion in (11.7), however, one discovers that the wave packet
gradually broadens in real space.

11.3 Solutions of the Stationary State Equation in 1d

It follows from the S. E. that if the potential is continuous with all the derivatives
(that is, V (x) ∈ C∞) the wave function ψ(x) is also ∈ C∞. Depending on the form
of the potential, one may find localized states, or running waves on the left or on
the right. Localized states occur when ψ(x) → 0 for x → ±∞ and correspond to
discrete energy eigenvalues for bound states. Many potentials of physical interest
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Fig. 11.1 Discretised
potential

are scattering problems1 in which for x → ±∞ V tends towards constants and
consequently ψ becomes a de Broglie wave. Then, all energies are possible, i.e. the
spectrum of eigenvalues is continuous. In general, there is no closed-form analytical
solutions. Thus, we can approximate V (x) by a piecewise constant, histogram-like
function (seeFig. 11.1). This introduces artificial steps, butmakes the solution easy. In
any interval inwhich V (x) is taken to be constant,ψ(x) is a linear combination of two
exponentials. In classically allowed regions where the energy E exceeds V (x), these
are e±ikx ,where �

2k2 = 2m(E − V ). Classically, the particle cannot be foundwhere
E < V (x), but in those classically forbidden regions, the wave function continues;
however, the exponentials become real, namely, e±λx where �

2λ2 = 2m(V − E).
The need for a normalizable function forbids growing exponentials for x → ∞ and
decreasing exponentials for x → −∞.

At a step discontinuity of the potential at x = x0, the S.E. implies a step-like con-
tribution to ψ′′(x) proportional to θ(x − x0), but ψ

′
(x) and ψ(x) remain continuous.

In the case of the hard wall and at the ends of the deep well ψ
′
(x) is discontinuous,

but there V makes an infinite jump.

11.4 Potential Step

A particle in the potential

V (x) =
{
0, x < 0

V > 0, x > 0
(11.8)

is free to go to infinity (both classically and in Quantum Mechanics); therefore, the
spectrum of Ĥ is continuous. Suppose an electron gun fires a beam of particles from
the left (x = −∞) to a detector to the far right. We are looking for the stationary
states, with a flux of particles reaching the barrier; classical bullets would bounce
elastically if their kinetic energy Ek is less than the threshold V, otherwise they
should go to the right with kinetic energy Ek − V .

1There is indeed a variety of interesting problems with V, which is periodic (electrons in perfect
crystals), aperiodic (e.g. electrons in glasses): here, I consider only the simplest examples.
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11.4.1 Energy Below Threshold

If Ek = �
2k2

2m < V, the solution is

ψ(x) =
{
Aeikx + Be−ikx con k > 0 per x < 0,

Ce−λx , per x > 0,
(11.9)

with �
2k2 = 2mE, �

2λ2 = 2m(V − E). The positive exponential would make the
wave function blow up at infinity and was discarded.

Computing the current with the term in A, one finds that J = |A|2 p
m > 0, where

p = �k; this is just the current from the gun, that is set by the experimenter; therefore
we may take A = 1. The wave functions and its derivative are continuous:

{
1 + B = C,

ik(1 − B) = −λC =⇒ 1 − B = iλ
k C.

(11.10)

The sum of these equations yields C = 2k
k+iλ ; hence, B = C − 1 = −iλ+k

iλ+k = −λ+ik
λ−ik .

Since |B|2 = 1, B is a phase factor, and we may set B ≡ eiβ , with real β, while
C = 1 + eiβ . Therefore,C = ei

β
2 (e−i β

2 + ei
β
2 ) and thewholewave function becomes

real ifwemultiply it by e−i β
2 .A constant phase factor is irrelevant, but itmakes evident

that this, like any real wave function, carries zero current. All the particles bounce.
This is also evident from the fact that ψ → 0 for x → inf: since ∂ρ

∂t = 0 ⇒ d J
dx = 0,

J = 0 everywhere.
As in the infinite wall case, there are places where the particle cannot be found

because of interference. On the other hand, there is a chance of detecting the parti-
cle in the classically forbidden region x > 0. The classical prohibition is absolute,
since a corpuscle with E = T + V and V > E must have a negative kinetic energy,
which is impossible. Even in Quantum Mechanics, the kinetic energy is a positive
definite operator T̂ , that is, an operator such that all the eigenvalues are positive;
any measurement of a positive definite operator must return a positive value. The
paradox can be understood as follows. The classical concept that the particle at a
given point has some kinetic energy is not tenable in Quantum Mechanics, since T̂
does not commute with the position x. We shall see in the next chapter that two
observables exist simultaneously when the corresponding operators commute. The
kinetic energy matrix taken over a complete set has positive eigenvalues, but the x
values in the barrier do not constitute a complete set, so the idea of a negative kinetic
energy under the barrier is not sound. On the other hand, the particle propagates as
a wave ψ with some energy E, and the corpuscle exists only after the detection. In
the same way, in the double slit experiment, the wave goes through both slits, and
the corpuscle exists only where the interference pattern is recorded. These remarks
remove the paradox, but the quantum behavior remains qualitatively different!
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11.4.2 Energy Above Threshold

If E > V ,

ψ(x) =
{
eikx + Be−ikx , x < 0

Ceiχx , x > 0,

with �
2k2 = 2mE, �

2χ2 = 2m(E − V .)

From the continuity conditions for ψ and dψ
dx in x = 0

{
1 + B = C,

ik(1 − B) = iχC =⇒ 1 − B = χ
k C,

one finds that {
C = 2k

k+χ
,

B = k−χ
k+χ

.

The incident current is A2k = k; the reflected current is |B|2k; by definition, the ratio
is the reflection coefficient

R = |B|2 =
∣
∣
∣
∣
χ − k

χ + k

∣
∣
∣
∣

2

.

Even if the barrier is lower than the energy eigenvalue E, a reflected current arises;
this would not happen classically. The transmitted current is |c|2χ; by definition, the
transmission coefficient is the ratio with the incident current and is given by:

T = |C |2 χ

k
= 4χk

∣
∣
∣
∣

1

χ + k

∣
∣
∣
∣

2

.

Therefore, R + T = 1.

11.4.2.1 Descending Step V < 0

Classically, for a negative step (V < 0), all the particles should fall in with increased
energy.

Quantum mechanically, the above solution still holds and there is a reflected
current, too. This is observed experimentally when a beam of electrons is diffracted
through the surface atoms of a solid.
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11.4.3 Potential Well of Finite Depth

Consider the symmetric potential

V (x) =

⎧
⎪⎨

⎪⎩

0, x < −a

−W < 0, −a < x < a

0, x > a.

An unsymmetric one would also be solvable, but would not add much to the interest.
The symmetric case is special, but also instructive, because it offers an elementary
example of the use of symmetry, which is a very important and far-reaching subject.
An even potential (V (−x) = V (x)) allows for even solutions (ψ(−x) = ψ(x)) but
also odd solutions (ψ(−x) = −ψ(x)).

Bound States E < 0

The bound solutions have negative energies, and there is a finite number of them;
they come with two different symmetries:

even :

ψ(x) =

⎧
⎪⎨

⎪⎩

Bekx , x < −a,

D cos(lx), −a < x < a,

Be−kx , x > a,

odd :

ψ(x) =

⎧
⎪⎨

⎪⎩

−Bekx , x < −a,

D sin(lx), −a < x < a,

Be−kx , x > a.

(11.11)
where

k =
√−2mE

�2
, l =

√
2m(E + W )

�2
; (11.12)

Imposing the continuity conditions for ψ and dψ
dx in x = a, we are sure they are

satisfied in x = −a as well. Therefore (Fig. 11.2),

Fig. 11.2 Potential well of
depth W

−W

a−a

x

V (x)
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even :
{
D cos(la) = Be−ka,

Dl sin(la) = kBe−ka;

odd :
{
D sin(la) = Be−ka,

Dl cos(la) = −kBe−ka .

(11.13)

The eigenvalue conditions are:

even :
l tan(la) = k

odd :
l cot(la) = −k.

(11.14)

Let us put

z = la =
√
2m(E + W )

�2
a

in order to simplify the argument of transcendental functions. Equation (11.12) allows
us to obtain k in terms of l. Using l2 = 2mW

�2 − k2,

k2a2 = 2mW

�2
a2 − l2a2 = z20 − z2 > 0

with

z20 = 2mW

�2
a2;

so,

k

l
= ka

la
=

√

z20 − z2

z
.

Equation (11.14) becomes

even :
tan(z) =

√
z20−z2

z ,

odd :
cot(z) = −

√
z20−z2

z .
(11.15)

These equations are readily solved numerically or graphically, and there are simple
limiting cases.

If z0 � 1, the well is deep, and if, in addition, we look at z � z0, we obtain the
lowest levels. As a first approximation, for ζ0 → ∞,

tan(z) → ∞ per zn → (2n + 1) π
2 , n ∈ N ,

cot(z) → ∞ per zn → (2n) π
2 , n ∈ N ,
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where N is the set of natural numbers 1, 2, 3, . . .. The condition

z2 = 2m(E + W )a2

�2
= (2n + 1)

π2

4

yields

E = −W + �
2π2

2m(2a)2
(2n + 1)2.

Taking into account that the width is 2a, these are the odd n solutions of the deep
well, which are spatially even; cot(z) → ∞ yields the even n solutions. When n
grows this approximation deteriorates.

Since 0 < z < z0, if z0 � 1, z must also be � 1. For spatially even states, we

replace z tan(z) =
√

z20 − z2 with tan(z) ≈ z, that is, z2 =
√

z20 − z2 =⇒ z4 ≈ z20 −
z2 =⇒ z2 ≈ z20 − z40. There is always at least one solution. In the spatially odd case

we consider z cot(z) = −
√

z20 − z2; there is no solution with cot(z) ≈ 1
z . A very

weak potential in one dimension always has a bound state, which is even.
The normalization requires, as usual,

∫ ∞
−∞ |ψn(x)|2 = 1.

11.4.4 Continuum States

For E > 0, all energies are allowed, and each eigenvalue is twice degenerate, that is,
there are two orthogonal states with the same energy. This reflects the experimenter’s
freedom to choose between shooting with a gun from left or right. Let us choose the
first arrangement. Classically, a marble thrown from −∞ would proceed beyond the
well with the same speed; because of quantum effects, part of the wave fired from
−∞ is reflected. Letting �k = √

2mE,

ψ(x) =

⎧
⎪⎨

⎪⎩

Aeikx + Be−ikx , x < −a,

C sin(lx) + D cos(lx), −a < x < a,

Feikx , x > a,

and the incident amplitude is A, since eikx has the current k
m > 0 which goes to the

right; B is the reflected amplitude and F the transmitted one. A is not really unknown,
since the incident flux is chosen at will by the experimenter. The conditions in in −a
yield: {

Ae−ika + Beika = −C sin(la) + D cos(la),

ik
[
Ae−ika − Beika

] = l [C cos(la) + D sin(la)] ,
(11.16)
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and those in a give

{
C sin(la) + D cos(la) = Feika,

l [C cos(la) − D sin(la)] = ikFeika .

According to the Cramer2 rule, since the determinant of coefficients is −l,

{
C = Feika

[
sin(la) + i kl cos(la)

]
,

D = Feika
[
cos(la) − i kl sin(la)

]
.

(11.17)

Solving (11.16), one finds

{
A = eika

2k [−(Ck + i Dl) sin(la) + (Dk − iCl) cos(la)] ,

B = e−ika

2k [(−Ck + i Dl) sin(la) + (Dk + iCl) cos(la)] ; (11.18)

and substituting (11.17),

{
A = −ie2ika

2kl F
[
(k2 + l2) sin(2la) + 2ikl cos(2la)

]
,

B = −i F
2kl (k2 − l2) sin(2la).

(11.19)

Finally,

F = e−2ika

cos(2la) − i sin(2la)

2kl (k2 + l2)
. (11.20)

The reflection coefficient is R = | BA |2 and the transmission one is T = | FA |2; of
course, R + T = 1.

11.5 The δ Potential

The limit of a deep narrow potential

V (x) = −aδ(x), a > 0 (11.21)

is also interesting and lends itself to a simple calculation of the discrete spectrum.
Very short range interactions also arise from theWeak Interaction. The S.E. for x 
= 0
reads as

d2ψ

dx2
= k2ψ(x), k2 = −2mE

�2
> 0.

2Gabriel Cramer (Geneve 1704–Bagnols sur Céze (France) 1752).
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The wave function is ψ(x) = A[ekxθ(−x) + e−kxθ(x)]. When doing the first
derivative, the θ functions originate δ functions, which, however, cancel.When doing
the second derivative, we get the δ function which is required by the Schrödinger
equation. We find that the δ potential has one bound state, with

E = −ma2

�2
.

The normalization constant A is easily obtained and and

ψ(x) =
√
ma

�
exp

[

−ma|x |
�2

]

.

11.6 Potential Barrier and Tunneling

Consider a beam of particles fired from a gun, say, on the left, towards the potential
bump

V (x) =

⎧
⎪⎨

⎪⎩

0 x < 0,

V > 0 0 < x < S,

0 x > S.

with the detector on the right. When the beam energy E > V , that is, the kinetic
energy is higher than the barrier, the problem is easily worked out, but the results
are qualitatively similar to the S → ∞ case that we have already considered above,
with some reflected and some transmitted current. The famous tunnel effect arises
when the energy is below threshold.

With E < V, the general integral is a combination of real exponentials e±λx in the
barrier, while outside, the exponentials are complex e±ikx , k > 0. The e±ikx waves
carry current ±k. Since the gun is on the left, no particle comes from x → inf and
the wave e−ikx is absent for x > S. Using the rules of Sect. 11.3, the solution is found
to be:

ψ(x) =

⎧
⎪⎨

⎪⎩

αeikx + βe−ikx x < 0,

γe−λx + δeλx 0 < x < S,

εeikx x > S,

with �
2k2 = 2mE, �

2λ2 = 2m(V − E). We may fix the incoming current by set-
ting α = 1. The continuity relations give us (Fig. 11.3):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + β = γ + δ,

ik(1 − β) = −λγ + λδ,

γe−λS + δeλS = εeikS,

−λγe−λS + λδeλS = ikεeikS.

(11.22)
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Fig. 11.3 Potential barrier

V

x

V (x)

The last two give us γ and δ: letting

η = ik

λ
,

one finds that {
γ = εeikS

2 (1 − η)eλS,

δ = εeikS

2 (1 + η)e−λS.

The first two (11.22) give us

2 = γ(1 − 1

η
) + δ(1 + 1

η
).

Hence,

2 = εeikS

2 {(1 − η)eλS(1 − 1
η
) + (1 + η)e−λS(1 + 1

η
)}

= εeikS

2 {2 cosh(λS) − (η + 1
η
) sinh(λS), }

and finally,

εeikS = 1

cosh(λS) − 1
2 (η + 1

η
) sinh(λS)

.

The classically impenetrable barrier is overcome with probability |εeikS|2 ∼ e−2λS .

This is the famous tunnel effect. In Sect. 11.4.1 I have already discussed the paradox
of a particle that is detected in a classically forbidden region; the tunnel effect is
an even more striking piece of evidence, since one can measure the energy E of
the particle beyond the barrier even at a long distance from it, find that E < V and
reach the conclusion that the particle has crossed a forbidden region. This can be
understood only if the particle propagates as a wave ψ with some energy E and the
corpuscle exists as such only after the detection in some position.

There are countless examples and applications of tunnel phenomena in Science
and Technology. Here is a short list:

1. Nuclear decay. A rough idea of α and β decays is provided by a potential well
with a transparent wall (Fig. 11.4). One can start by evaluating the bound states
φn that the well would have if the wall were infinitely thick. When the actual
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Fig. 11.4 Potential well
with a penetrable wall

potential is restored, φn is no longer an eigenstate, but rather a wave packet called
a resonance, with a width ΔE in energy. Sooner or later the particle will escape
to infinity. The interested reader can find more about resonances in Chap.24. The
life timeΔt of the resonance can vary from a fraction of a second to several billion
years.

2. Hydrogen bond. In liquid H2O, a proton can tunnel between two Oxygen atoms
like a particle in a double well potential. This gives a significant contribution
to the chemistry of water and other liquids with OH groups. Normally isotope
effects are negligible, but beware! Heavy water D2O with Deuterium replacing
Hydogen is poisonous!

3. Josephson effect. In superconductors, electrons form bound pairs called Cooper
pairs (see Sect. 25.6.1). This happens at low temperatures when the Coulomb
repulsion is exceeded by an effective attractive interaction due to vibrations, or
to special electron correlation effects. If two superconductors separated by a thin
insulating barrier are placed in a circuit, a d.c. potential difference V produces an
alternating current

I = I0 sin(
2eV

�
t),

while under some condition, an a.c. V (t)produces a d.c. current (Shapiro effect).
Such interesting phenomena can be understood in terms of Cooper pairs tun-
neling the barrier as such. Their effective wave function �(x, t) is called the
superconducting order parameter.

There are also many applications. For example:

1. SQUID (SuperconductingQuantum InterferenceDevices) are extremely sensitive
magnetometers. They canmeasure 10−14 T, while for instance the magnetic fields
produced by the heart are of order 10−10 T and those produced by the brain can
also be measured. The SQUID is based on the Josephson effect.

2. In nanocircuits, quantum effects are important. The metal-insulator-metal junc-
tion devices, and the MOSFETs (metal oxide semiconductor field effect tran-
sistor), which are currently widely used in electronics, use an electric field to

http://dx.doi.org/10.1007/978-3-319-71330-4_24
http://dx.doi.org/10.1007/978-3-319-71330-4_25
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Fig. 11.5 SET (Single
electron tunneling) transistor.
The grain is a metallic island
of nanoscopic size (10−6 cm
or less)

Gate
V Gate

grain

source

tunnel

tunnel

drain

V

condenser

modulate the tunnel effect through a thin insulating barrier to change the electron
population and conductivity.

3. The single electron transistor Fig. 11.5 is also based on the tunnel effect. The gate
potential modulates the barrier and therefore also the current produced by the
potential V .

4. The tunnel effect microscope Fig. 11.6 allows us to scan and image a surface
with atomic resolution with a metal tip. It was invented in 1981 by IBM scientists
Gerd Binnig e Heinrich Rohrer, who won the Nobel for Physics in 1986. While
the tip scans the surface, its distance from it, that is of the order of atomic sizes, is
recorded. The precise positioning of the tip is achieved by the piezoelectric effect.
This effect arises in some solids like SiO2 with a low-symmetry ionic crystalline
structure that produces an electrical potential if deformed. Very sensitive trans-
ducers are built on this principle. A potential difference between the tip and the
surface drives a tunnel current: the vacuum acts as barrier. When the tip is posi-
tive, the current comes from filled electronic states, when it is negative electrons
are injected into empty states of the sample. This current depends exponentially
on the distance from the surface. In this way, one gains information about mor-
phology and electronic structure. A gallery of STM images can be found in the
site

http://www.almaden.ibm.com/vis/stm/gallery.html.

Fig. 11.6 Block diagram of
the tunnel microscope. In the
enlarged detail, it is seen that
the tip ends in a single atom
from which the current
passes to the surface

http://www.almaden.ibm.com/vis/stm/gallery.html


Chapter 12
The Postulates of Quantum Mechanics:
Postulate 1

The axiomatic formulation of Quantum Mechanics is generally
presented as a set of four postulates, introduced by John von
Neumann. The physical meaning of each of them requires a
nontrivial, careful enquiry.

Here is first postulate.

The state of any system is represented by a complex wave function Ψa(x, t),
where: x stands for the set of all the coordinates, t denotes time, and a is a
(possibly empty) set of constants of the motion (the so called quantum num-
bers). If a is the set of all the observables that are compatible, the quantum
state is uniquely determined.

12.1 The Wave Function

The system referred to above could be a particle, an atom, or even a macroscopic
superconductor (then, x stands for a very large set of coordinates), so the statement
is quite strong and general. In any case, all the information that is available from all
possible experiments is in Ψa(x, t). The wave function must be taken to be normal-
ized. In the case of a single degree of freedom Ψa(x, t), the normalization condition
reads as

∫ |Ψ (x, t)|2dx = 1, while in general, onemust integrate the squaremodulus
over all the variables. The function is complex, thereforeΨ (x, t) = |Ψ (x, t)|eiφ(x,t),
where φ(x, t) is the phase. One can change φ(x, t) by a constant phase factor (for
instance, multiplying Ψ (x, t) by i) but the physical state remains the same; never-
theless, the phase difference between two wave functions does matter a lot, since the

© Springer International Publishing AG, part of Springer Nature 2018
M. Cini, Elements of Classical and Quantum Physics,
UNITEXT for Physics, https://doi.org/10.1007/978-3-319-71330-4_12
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wave functions do interfere. We shall see that the phase can be changed in several
ways (e.g. rotations, Galileo transformations, gauge changes).

The set of possible wave functions of a given system is a vector space; all linear
combinations of wave functions representing alternative states of the same system
Φ = αΨ + βχ with complex coefficients α,β, once normalized, are other possible
wave functions. The scalar product

(Ψ |Φ) ≡ 〈Ψ |Φ〉 =
∫

Ψ (x, t)∗Φ(x, t)dx (12.1)

is a complex number. In this equation I present two alternative notations in use. The
above notation 〈Ψ |Φ〉 is the bra-ket notation introduced by Dirac, with Ψ (x) as a
bra and Φ(x) as a ket. When 〈Ψ |Φ〉 = 0, the functions are said orthogonal. The
maximum number d of orthogonal wave functions is the dimension of the vector
space; for many systems d = ∞. The normalization condition is 〈Ψ |Ψ 〉 = 1. Most
often, it is preferable to work with an orthonormal basis set of functions. Let us see
how to achieve such a set.

12.2 Gram–Schmidt Orthogonalization

The Gram–Schmidt Orthogonalization is the most obvious. Let (v1, · · · , vn) be a set
of normalized vectors, taken in any order. Using any orthonormal basis, (vi |v j ) =∑

α v
∗
i,αv j,α denotes the scalar product. We choose w1 = v1 as the first vector of the

orthogonalized set and remove the component along v1 from the remaining vectors
by vi → vi − (vi |v1)v1. We normalize all the new vectors, then set w2 = v2 as the
second vector of the orthogonalized set; next we proceed to orthogonalize the vectors
(v3 · · · vn) to w2, and so on. The procedure fails to give the basis if the initial set does
not span a n-dimensional space. The result of this procedure is a basis of orthogonal
vectors, but if we change the order if the vi we get a different basis.

12.3 Löwdin Symmetric Orthogonalization

A smart orthogonalization method, proposed by Löwdin in 1950, is often preferred
for its aesthetic and also practical advantages. It is called symmetric orthogonal-
ization, since it starts from a set of normalized vectors and treats all of them
on equal footing. In the case of just two vectors v1 and v2, it consists in setting
w1 = αv1 +βv2,w2 = βv1 + αv2 and seeking complex numbers α and β such that
w1 and w2 are orthonormal. Löwdin proposed an elegant, systematic method to do
that for n vectors. To start with, one computes the overlap matrix S with entries of
the scalar products

Skm = (vk |vm), (12.2)
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with the normalized non-orthogonal vectors (v1, · · · , vn). Then, one looks for a set
of coefficients Lkj of a linear transformation

wi =
n∑

k=1

Lkj v j (12.3)

such that
(wi |wj ) =

∑

k,m

L∗
ik L jpSpk = δi j . (12.4)

There is an infinity of sets of orthogonal vectors wi . We can exploit this arbitrari-
ness to put conditions on L . Now we note that if we assume that L is a Hermitian
matrix, L∗

ki = Lik, then we can rewrite this simply as LSL = 1, where 1 stands for
the unit matrix. So, let us look for a Hermitean L . Next, we note that if L and S were
numbers, the result would be L = S− 1

2 . We must find a meaning of L = S− 1
2 in

the case of Hermitean matrices. This is not hard to do. Since S is Hermitean, it can
be diagonalized: Sd = U †SU = diag(λ1,λ2, · · · ,λn), where the columns of U are
the eigenvectors of S and λi the ith eigenvalue. Then, we can denote by the symbol

S
− 1

2
d the diagonalmatrix S

− 1
2

d = diag(λ
− 1

2
1 ,λ

− 1
2

2 , · · · ,λ
− 1

2
n ).Hence, S− 1

2 = US− 1
2U †

does the job. Here is the desired transformation:

wj =
n∑

k=1

(
S− 1

2

)

k j
vk . (12.5)

Besides being convenient for numerical work, this method has been shown to min-
imize

∑n
i |w(i) − v(i)|2; in this way, the orthogonal basis is as close as possible to

the original one.

12.4 Schwarz Inequality

Let −→a ,
−→
b denote vectors in real vector space. The norms are denoted by a =√−→a · −→a and b =

√−→
b · −→

b . Then, −→a · −→
b = ab cos(θ); since the square of the

cosine of any real angle is ≤ 1, one finds the Schwarz inequality

|−→a · −→
b |2 ≤ (

−→a · −→a )(
−→
b · −→

b ).

This is elementary, but the interesting thing is that it holds for any real or complex
vector space independently of the dimension d. Even for state vectors (that is, wave
functions),

|〈α|β〉|2 ≤ 〈α|α〉 〈β|β〉 = 1.
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12.5 Hilbert Spaces

Every state of the system is represented by a normalized function Ψa(x, t); the
function is a normalized vector |a〉 in a possibly infinite space of functions. The
existence of a norm requires the notion of the length of a vector, or equivalently,
the notion of the distance between two points. So, the space is a normed space. The
expansion of a vector over an infinite basis is a series expansion and requires a limit to
exist; physically, we must require that each converging series represents a possible
state. Therefore, we must ask that the limit of every convergent series belongs to
the space. However, this is not granted in an infinite-dimensional normed vector
space. For instance, the Taylor series for sin(x) is a polynomial series, but sin(x)
is not a polynomial, so the space of polynomials fails to satisfy this requirement.
When every convergent series belongs to the space, we speak of a complete space.
A complete normed space is called a Banach space. However there are many ways
to assign a norm in a Banach space. For example, the space of continuous functions
f (x) defined in a closed interval (for instance, x ∈ [0, 1]) is a Banach space with
the norm || f || = sup| f (x)|. The space of square integrable functions where the
wave functions belong is called L2. The completeness of L2 is shown by the Fourier
theorem. It is a special Banach space in which the norm is defined in terms of
the scalar product; in one dimension, it is || f (x)|| = 〈 f | f 〉 = ∫ ∞

−∞ | f (x)|2; this
definition extends to many dimensions in the obvious way. Such a Banach space is
called a Hilbert space.

Suppose a system S1 has a Hilbert space H1 of dimension d1 with basis a1, a2, · · ·
ad1, and a second system S2 has a Hilbert space H2 of dimension d2 with basis
b1, b2, · · · bd2. Now, the two systems might interact. To handle the compound sys-
tem S1

⋃
S2 we need the tensor product H1

⊗
H2 with basis a1

⊗
b1, a1

⊗
b2, · · ·

ad1
⊗

bd2.

12.6 Quantum Numbers

Depending on the way a system is prepared, the wave function Ψ may be an eigen-
function of certain operators. Then, it is very helpful to label Ψ as Ψa(x), where
a stands for the set of eigenvalues of those operators. This might be an empty set,
otherwise a = {A, B,C, . . .} and its entries are called quantum numbers. We shall
see that the labels must correspond to compatible observables, and their operators
must commute. In the case in which Ψ is an eigenfunction of a time-independent
Hamiltonian Ĥ , the set a = {A, B,C, . . .} comprises the energy and constants of
the motion that must coexist; they are referred to as compatible observables; they
must commute both with Ĥ and with each other. For a given Ĥ , there are, at times,
alternative choices of the set of operators, and the label a is a subset of one of those.
For the simple case of a free Schrödinger particles, as we shall see, the state can be
labelled by energy and 3momentum components, or by energy, the square of angular
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momentum and one of its components, but the square of angular momentum is not
compatible with the components of the momentum, and the 3 components of the
angular momentum are not compatible.

If a contains all the operators of a set of compatible operators, the quantum state
is uniquely identified; this implies that two different quantum states must differ by at
least one quantum number.



Chapter 13
Postulate 2

Any observable Q corresponds to an operator Q̂ acting on the wave functions.
These operators are linear, hermitean (that is, Q̂† = Q̂), and must possess a
complete set of eigenvectors. The expectation value of Q in the state |Ψ 〉 is
〈Ψ |Q̂|Ψ 〉 ≡ 〈Ψ |Q̂Ψ 〉.

13.1 Mathematical Context: Operators, Matrices, and
Function Spaces

D ≡ d
dx , and also x̂ (which multiplies by x), are examples of linear operators Ô:

Ô(Φ + Ψ ) = ÔΦ + ÔΨ . Coordinates and momenta of Classical Mechanics wear
a hat and become quantum operators, and we shall meet more. The scalar product
of Q̂|Ψ 〉 with |Φ〉, which is 〈Φ|Q̂|Ψ 〉, may be regarded as the element Mi j of some
matrix M with i and j replaced by the indices Φ and Ψ, which are functions ∈ L2; it
is called a matrix element of Q̂; the only real difference with a conventional matrix
Mi j is that the indices are often continuous and the matrix most often has an infinity
of rows and columns. Werner Heisenberg initially formulated the theory in terms of
matrices.

13.2 Why Hermitean Operators?

Letα,β denote vectors of theHilbert space. TheHermitean adjoint Â† of Â is defined
by

〈 Â†α|β〉 = 〈α| Âβ〉 ∀α,β. (13.1)

© Springer International Publishing AG, part of Springer Nature 2018
M. Cini, Elements of Classical and Quantum Physics,
UNITEXT for Physics, https://doi.org/10.1007/978-3-319-71330-4_13

213



214 13 Postulate 2

In the 1d case, the notation is simplest: then, we write

∫
dx( Â†α)∗β =

∫
dxα∗ Âβ,

and taking the complex conjugate of both sides,

(∫
dxα∗ Âβ

)∗
=

∫
dxβ∗ Â†α;

this suggests the general rule for taking the complex conjugate of anymatrix element:

〈α| Â|β〉∗ = 〈β| Â†|α〉 ∀α,β. (13.2)

Self-adjoint or Hermitean operators Q̂ have a special importance. A Hermitean
operator is such that Q̂† = Q̂; hence all Hermitean operators have the property
that 〈Φ|Q̂Ψ 〉 = 〈Q̂Φ|Ψ 〉. If we set in Eq. (13.2) α = β, we conclude that all the
expectation values of Hermitean operators must be real. Since measures quantities
must be real, the reader can have the impression that observables correspond to
Hermitean operators. We shall see that this is true, and that the eigenvalues are also
real. This is not the case for D = d

dx ; in fact,

〈 f |Dg〉 = −〈Df |g〉.

and D is anti-Hermitean, while the momentum p̂ = −i D is Hermitean1 over L2.

13.3 Orthogonal Spaces

Different eigenvalues of any Hermitean operator belong to orthogonal eigenvectors.
Indeed, starting with {

Â|m〉 = am |m〉,
Â|n〉 = an|n〉;

and taking scalar products, we get

{ 〈n| Â|m〉 = am〈n|m〉,
〈m| Â|n〉 = an〈m|n〉.

1 p̂ fails to be Hermitean on the space P(N ) of polynomials of degree N , but this does not matter
because all polynomials are outside L2.
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The complex conjugate of the second is 〈n| Â†|m〉 = a∗
n 〈n|m〉, and since A = A†, it

follows that 〈n| Â|m〉 = an〈n|m〉. Subtracting from the first equation, we find that
0 = (an − am)〈n|m〉. So, if (tn − tm) �= 0, it follows that 〈n|m〉 = 0.

13.4 Completeness

The eigenvectors of an observable operator T̂ represent states such that T̂ has a
sharp value. The set of eigenvectors must be complete; this point will be expanded
when dealing with the third postulate. The completeness grants that every |Ψ 〉 can
be expanded:

Ψ 〉 =
∑
m

|m〉〈m|Ψ 〉. (13.3)

Here,
∑

m is a sum where the spectrum of T̂ is discrete and an integral where
it is continuous. In general, |Ψ 〉 and |m〉 depend on many variables, but in one-
dimensional problems, this expansion is just the familiar Fourier theory:

f (x) =
∫ ∞

−∞
dq

e−iqx

2π
f̃ (q).

This is the continuous expansion in the complete set of plane waves over the real
axis, which would be replaced by a Fourier series in the case of a periodic system.
The plane waves have sharp energy and momentum. Now we can see that if T̂ is an
observable, it isphysically necessary that the set {m}of eigenvectors be complete. The
need for completeness arises because the knowledge of f (q) must be equivalent to
that of f (x), since this is a canonical transformation already in Classical Mechanics.

Formally, we may rewrite (13.3) in the form

1 =
∑
m

|m〉〈m|, (13.4)

where 1 is the identity operator. Therefore, if Ai j = 〈Φi | ÂΦ j 〉 ≡ 〈Φi | Â|Φ j 〉 is the
matrix element of Â between two elements of a basis set, and Bi j is thematrix element
of B̂, the product Â B̂ turns out to be 〈Φi | Â B̂|Φ j 〉 = 〈Φi | Â ∑

k |k〉〈k| B̂|Φ j 〉 =∑
k Aik Bk j and the matrices of the operators must by multiplied row by column.

Mathematically, the matrices are a representation of the operators. The operator is
known if the matrix and the basis set are specified.
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13.5 Commutators: Angle and Angular Momentum

Recall that, classically, the Poisson bracket of canonically conjugated variables is 1.
In Quantum theory, couples of canonically conjugated operators have commutators
−i�. For instance, [ p̂, x̂] = p̂x̂ − x̂, p̂ = −i�, where � = h

2π . Nowwemeet another
remarkable pair: angular momentum and angle.

We can start from the example of the plane rigid rotator, which can rotate around
the z axis, with moment of inertia2 I . In terms of the angle φ, the Lagrangian is

L(φ, φ̇) = 1

2
I φ̇2.

The momentum L̂ z = I φ̇ is canonically conjugated to the angle φ. The Hamiltonian
operator is like the classical function

Ĥ = L2
z

2I
, (13.5)

where L̂ z is the z component, L̂ z = xpy − ypx .
In plane polar coordinates,

x = ρ cosφ, y = ρ sin φ.

The components of the momentum −i�∇ can be obtained from the chain rule

∂

∂x
= ∂ρ

∂x

∂

∂ρ
+ ∂φ

∂x

∂

∂φ
,

∂

∂y
= ∂ρ

∂y

∂

∂ρ
+ ∂φ

∂y

∂

∂φ
.

So,

ρ =
√
x2 + y2, φ = arctan

y

x
.

Differentiating the radius,

∂ρ

∂x
= x

ρ
= cosφ,

∂ρ

∂y
= y

ρ
= sinφ,

and since
d arctan u

du
= 1

1 + u2
,

2For a body with density ρ(
−→x ), the moment of inertia relative to the z axis is I = ∫

d3xρ(
−→x )(x2 +

y2).
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weobtain ∂φ
∂x = 1

1+( y
x )

2
d
dx

( y
x

) = − y
x2+y2 ,

∂φ
∂y = 1

1+( y
x )

2
d
dy

( y
x

) = x
x2+y2 ; in polar coor-

dinates,
∂φ

∂x
= − sinφ

ρ
,

∂φ

∂y
= cosφ

ρ
;

so,
∂

∂x
= cosφ

∂

∂ρ
− sinφ

ρ

∂

∂φ
,

∂

∂y
= sinφ

∂

∂ρ
+ cosφ

ρ

∂

∂φ
.

Now, L̂ z = xpy − ypx gives us

L̂ z = −i�

{
ρ cos(φ)

[
sinφ

∂

∂ρ
+ cosφ

ρ

∂

∂φ

]

−ρ sin(φ)

[
cosφ

∂

∂ρ
− sin φ

ρ

∂

∂φ

]}
.

A spectacular simplification yields the final result:

L̂ z = −i�
∂

∂φ
.

So, −i� ∂
∂φ

has the fundamental commutation rule with φ. The eigenvalue equation

L̂ zψm(φ) = m�ψm(φ)

yields the eigenfunctions

ψm(φ) = eimφ

√
2π

.

� is the basic angular momentum, and the condition ψ2π(φ) = ψm(0) requires that
the azimuthal quantum number m be the integer, m = 0,±1,±2, · · · The result
says that the angular momentum of any system must be a multiple.3 Classically, it is
obvious that by tilting the rotation axis a little bit, the component of L must change
with continuity. Instead the measured values are discrete, while the probabilities of
measuring those values vary with continuity, as we shall see. The energy eigenvalues
of the rotor are Em = 1

2I m
2
�
2.

3This is the orbital angular momentum; the spin has another nature and will be discussed later.
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13.6 Commutators: Properties and Tricks

From the definition, it is obvious that

[ Â, B̂]− = −[B̂, Â]−;

[ Â, B̂ + Ĉ] = [ Â, B̂] + [ Â, Ĉ];

[ Â B̂, Ĉ]− = Â[B̂, Ĉ]− + [ Â, Ĉ]− B̂; (13.6)

[ Â, B̂Ĉ]− = B̂[ Â, Ĉ]− + [ Â, B̂]−Ĉ .

The analogy with the Poisson brackets is also evident. Simple commutators are
readily obtained. The result [xn, p̂] = i�nxn−1 can be obtained by acting over a
f (x) or else by starting with [x2, p]− = 2i�x ; otherwise, one can prove the result by
induction, starting with A = x, B = x2,C = p, [x3, p]− = x[x2, p] + [x, p]x2 =
3i�x2, and so on. From the definition of the angular momentum

−→
L = −→r ∧ −→p

Lx = ypz − zpy, Ly = zpx − xpz, Lz = xpy − ypx ,

and from the fundamental commutator [pz, z] = −i�, one finds

[Lx , Ly] = ypx [pz, z] + [z, pz]pyx = i�Lz,

ad cyclic results, that can be summarized as follows:

−→
L ∧ −→

L = i�
−→
L . (13.7)

Similarly, one finds:

[−→L 2, Lx ] = [L2
y, Lx ] + [L2

z , Lx ],

[L2
y, Lx ] = Ly[Ly, Lx ] + [Ly, Lx ]Ly = −i�(LyLz + LzL y) = −i�

[
Ly, Lz

]
+ ,

[L2
z , Lx ] = Lz[Lz, Lx ] + [Lz, Lx ]Lz = i�

[
Ly, Lz

]
+ .

Thus, it turns out that
[−→L 2, Lx ] = 0. (13.8)

In other words, the square
−→
L 2 of the angular momentum and any one of the compo-

nents exist simultaneously.



13.6 Commutators: Properties and Tricks 219

Problem 25 For given operators Â, B̂, Ĉ, D̂, Ê, F̂ , compute

[ Â B̂Ĉ, D̂ Ê F̂]−.

Solution 25 One finds

[ Â B̂Ĉ, D̂ Ê F̂]− = Â B̂{[Ĉ, D̂]− Ê F̂ + D̂[Ĉ, Ê]− F̂ + D̂ Ê[Ĉ, F̂]−}
+ Â{[B̂, D̂]− Ê F̂ + D̂[B̂, Ê]− F̂ + D̂ Ê[B̂, F̂]−}Ĉ
+{[ Â, D̂]− Ê F̂ + D̂[ Â, Ê]− F̂ + D̂ Ê[ Â, F̂]−}B̂Ĉ .

13.7 Angular Momentum in 3 Dimensions

13.7.1 The Algebra

From Eq. (13.7), one can find everything else about angular momentum. We can
have one diagonal component and choose Lz ; so there is a subspace of functions
|λ,m〉, where λ is the eigenvalue of L2 and Lz|λ,m〉 = m|λ,m〉. It is obvious that
the subspace must be finite and there is some positive integer l such that m ≤ l.

Introduce the shift operators L±, such that

L+ = Lx + i L y, L− = Lx − i L y .

Since
[Lz, L±] = ±�L±,

one finds,
LzL±|λ,m〉 = (m ± 1)�L±|λ,m〉,

therefore
L±|λ,m〉 = C±|λ,m ± 1〉. (13.9)

Since λ is the maximum eigenvalue, we run into a contradiction, unless

L+|λ, l〉 = 0.

The identity
L−L+ + L2

z + �Lz = L2

applied to |λ, l〉 yields λ = l(l + 1). However, the usage is to denote the eigenstates
by |l,m〉 instead of writing |l(l + 1),m〉.
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Scalar multiplication of (13.9) by itself gives us

C2
± = [l(l + 1) − m(m ± 1)]�2,

and we obtain the useful result

L±|l,m〉 = �

√
l(l + 1) − m(m ± 1)|l,m ± 1〉. (13.10)

13.7.2 Angular Momentum Matrices

We can now find the matrices of
−→
L on the |l,m〉 basis. They are:

〈l1m1|L2|l2m2〉 = �
2l1(l1 + 1)δl1,l2δm1,m2 (13.11)

〈l1m1|Lz|l2m2〉 = �m1δl1,l2δm1,m2 (13.12)

〈l1m1|L±|l2m2〉 = �

√
l2(l2 + 1) − m2(m2 ± 1)δl1,l2δm1,m2±1. (13.13)

Example 6 Matrices of di l = 1 in � units.

Lz = diag(1, 0,−1); L+|1,−1〉 = √
2|1, 0〉; L+|1, 0〉 = √

2|1, 1〉; L+|1, 1〉 = 0.

We assign the basis vectors with:

|1, 1〉 →
⎛
⎝ 1
0
0

⎞
⎠ , |1, 0〉 →

⎛
⎝0
1
0

⎞
⎠ , |1,−1〉 →

⎛
⎝0
0
1

⎞
⎠ ,

and find (denoting the matrices with the names of the operators):

L+ =
⎛
⎝0

√
2 0

0 0
√
2

0 0 0

⎞
⎠ ; (13.14)

it follows that

L− =
⎛
⎝ 0 0 0√

2 0 0
0

√
2 0

⎞
⎠ , (13.15)

and so

Lx = 1√
2

⎛
⎝ 0 1 0
1 0 1
0 1 0

⎞
⎠ , (13.16)
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Ly = 1√
2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ . (13.17)

In general, in terms of matrices of size 2l + 1, one can represent the angular
momentum over the |l,m〉 basis. The matrices of

−→
L obey the same commutation

rules and the same eigenvalues as the operators; they form a representation of angular
momentum.

13.8 Traslations, Rotations, Boosts and Unitary Operators

Let us see how to change the reference frame in QuantumMechanics. In one dimen-
sion, a shift by a is done by an operator T̂a such that for any analytic function f ,

Ta f (x) = f (x + a).

The function is translated to the left if a > 0.
The matrix which rotates a point around the z axis by Δφ is

MΔφ =
⎛
⎝ cos(Δφ) sin(Δφ) 0

− sin(Δφ) cos(Δφ) 0
0 0 1

⎞
⎠ .

Note that−→x ′ = MΔφ
−→x is rotated clockwise ifΔφ > 0; the rotation of a function

by Δφ is defined as f (x, y, z) → RΔφ f (x, y, z), where

RΔφ f (x, y, z) = f (x cos(Δφ) + y sin(Δφ), y cos(Δφ) − x sin(Δφ), z). (13.18)

Note that RΔφ is rotated counterclockwise. Finally, the transformation f (x) →
f (x + vt) takes a scalar function to a new reference system moving with speed −v

with respect to the original one.
Are we done? No! We have written these changes of the reference system as

operations on x. We must be able to represent them as quantum operators Â acting
on f itself. These are unitary that is,

Â† = Â−1. (13.19)

This property ensures that a normalized wave function in sent to a normalized wave
function, since 〈Aψ|Aψ〉 = 〈ψ|A†Aψ〉 = 〈ψ|ψ〉.
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Translations

Since

f (x + a) =
∞∑
n=0

an

n!
(

d

dx

)n

f (x),

we may write

T̂a =
∞∑
n=0

an

n!
(

d

dx

)n

= ea
d
dx = eia

p
� . (13.20)

This is a hyperdifferential operator (it does derivatives of any order up to ∞).
The momentum is the generator of the infinitesimal translations. It commutes

with H and is conserved if the system is invariant under translation. Besides, since
p is Hermitean, T̂ †

a = T̂−a ; this verifies the unitarity.

Rotations

R̂ can be written in terms of
−→
L . To see how, we consider Δφ as the effect of a

succession of n → ∞ infinitesimal rotations around z, δφ = Δφ
n . An infinitesimal

rotation with cos(Δφ) ∼ 1, sin(Δφ) ∼ Δφ, produces a change that is related to
−→
L z,

since

f (x, y, z)
→
Rδφ

f (x ′, y′, z) ∼ f (x + yδφ, y − xδφ, z)

∼ f (x, y, z) + δφ

{
y
∂ f

∂x
− x

∂ f

∂y

}
= f (x, y, z) + δφ(−i)Lz f (x, y, z)

and

f (x, y, z)
→
Rδφ

[
1 − iδφLz

]
f (x, y, z).

To sum up, the operator of the infinitesimal rotation is

Rδφ = [
1 − iδφLz

]

and L is the generator. For a finite rotation, we need

RΔφ =
n

�

δφ

Rδφ. By the known identity

e−a = Lim
n → ∞

(
1 − a

n

)n
,

one obtains the operator that does a finite rotation Δφ around z in the form

Rφ = e−i ΔφLz
� .
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More generally,

R−→
φ

= e−i
−→
Δφ·−→L . (13.21)

Besides, since L is Hermitean, R†−→
φ

= R−→−φ
; this verifies the unitarity.

The set of all the operators (13.21) constitutes a mathematical structure called
the O(3) Group. This means that, multiplying the operators we get the operator
that corresponds to doing the rotations one after another, with each operator having
an inverse. The symbol O(3) means that the rotations are in 3 dimensions and can
be represented by orthogonal matrices. Any rotationally invariant system has the
property that [H,

−→
L ]− = 0. The angular momentum is conserved, as in Classical

Mechanics.

Non-relativistic Boosts

The unitary operator Û (v) = exp(imv.x) adds the momentum mv to each momen-
tum component of a wave function ψ(mx); this is equivalent to a boost to a new
reference system moving with speed −v with respect to the original one.

13.9 General Uncertainty Principle and Compatible
Observables

If we wish to measure an observable Â in a system described by the wave function
ψ, the outcome of the experiment can be summarized by a mean value 〈 Â〉 and by a
standard deviation σA = √〈[A − 〈A〉]2〉. This is also familiar in Classical Physics.
The novelty of Quantum Mechanics is that the existence of a wave function creates
an interdependence among the measurements of different observables. The precision
with which two observables Â and B̂ can be measured simultaneously is limited by
the following inequality4:

σ2
Aσ

2
B ≥

(
〈ψ|[ Â, B̂]−|ψ〉

2i

)2

∀ψ, (13.22)

where σ2
A = 〈[A − 〈A〉]2〉. This implies that Â and B̂ are compatible only if they

commute.5 Heisenberg proposed this as a fundamental principle of Physics, while
Einstein disagreed strongly, and thought that a complete theory should disclose the
missing information. The result shows that in QuantumMechanics, two observables
are compatible (= measurable simultaneously and exactly) only if their operators
commute.

4If one picks ψ = eigenstate of Â, say, then σA = 0; in this limiting case σB blows up.
5If they fail to commute, it can still happen that the r.h.s. of (13.22) vanishes for some ψ.
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To prove this, one can assume6 that 〈 Â〉 = 0, 〈B̂〉 = 0; Now, we may write σ2
A =

〈ψ| Â2|ψ〉 = 〈 Â†ψ| Âψ〉 = |〈 f | f 〉, where | f 〉 = Âψ〉, and similarly, σ2
B = |〈g|g〉,

where |g〉 = B̂ψ〉.
According to the Schwarz inequality,

σ2
Aσ

2
B = 〈ψ| Â2|ψ〉〈ψ|B̂2|ψ〉 = 〈 f | f 〉〈g|g〉 ≥ |〈 f |g〉|2 = |〈ψ| Â B̂|ψ〉|2,

since 〈 f |g〉 = 〈AB〉. To reach the final form, we need another trivial inequality. For
every complex number z,

|z|2 = (Re(z))2 + (Im(z))2 ≥ (Im(z))2 =
(
z − z∗

2i

)2

.

Letting z = 〈 f |g〉, one obtains

σ2
Aσ

2
B ≥

( 〈 f |g〉 − 〈g| f 〉
2i

)2

.

Now, since 〈 f |g〉 = 〈AB〉, and 〈g| f 〉 = 〈BA〉, (13.22) results. The energy-time
uncertainty deserves a separate discussion, (see Sect. 15.1.1).

Minimal uncertainty

There are no limits to ignorance: one can easily conceive states with large uncer-
tainty both in x and in p. Then, σAσB is much larger than the theoretical limit. It is
interesting to find out the condition on ψ that grants a minimum value of σAσB ; it is
assumed that ψ is not an eigenstate of either observable. This condition emerges if
we reverse-engineer the proof in the last paragraph. The main step there was the use
of Schwartz inequality on the vectors | f 〉 = ( Â− < A >)|ψ〉, |g〉 = (B̂− < B >

)|ψ〉; the inequality becomes an equality for parallel vectors, therefore we take | f 〉
proportional to |g〉. Moreover, we inserted a ≥ sign when we neglected the real part
of z2 = 〈 f |g〉2, but this becomes an = sign if 〈 f |g〉 is imaginary. Thus, picking

|g〉 = iλ| f 〉, with real λ,

we obtain

σ2
Aσ

2
B =

(
〈ψ|[ Â, B̂]−|ψ〉

2i

)2

.

This depends on the parameter λ because there is a family of states ranging
between sharp B with ill-defined A to the opposite case.

6Indeed, 〈 Â − 〈 Â〉〉 = 0 and σ2
Â−〈 Â〉 = σ2

Â
; moreover, the commutator of Â and B̂ is not changed

if we subtract the mean values from the operators.

http://dx.doi.org/10.1007/978-3-319-71330-4_15
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In the special case A = p̂, B = x̂ , the condition for minimum uncertainty reads

( p̂ − 〈p〉)Ψ = iλ(x − 〈x〉)Ψ ; (13.23)

to find out the shape of this wave function we may shift the origin and write

( p̂ − 〈p〉)Ψ = iλxΨ.

One can see by inspection that there is a family of solutions, Ψ = exp[2π i<p>x
h ]Ψ0

where

−i�
d

dx
Ψ0(x) = iλxΨ0.

Equation (13.23) is solved by the gaussian shifted packet (to be normalized)

Ψ (x) = exp

[
−λ

(x− < x >)2

2�
+ i < p > x

�

]
.

The ground state of the Harmonic oscillator is of this form, as we shall see.
Suppose the two operators Â and B̂ have a complete common set ψab of eigen-

functions. Then,

Âψab = aψab, B̂ψab = bψab ∀ψab =⇒ Â B̂ψ = abψ = B̂ Âψ.

Any relation that holds for the full complete set is an operator relation. So,

=⇒ [ Â, B̂]− = 0.

The matrices taken on the set ψab are diagonal, hence the matrices also commute.
We know that a unitary operator U is such that

UU † = 1 = U †U. (13.24)

Now consider the two hermitean matrices A and B, which represent the operators
on the basis ψab. We can transform to any other basis by a unitary transformation U
by writing A → Ã = U AU †. SinceU AU †UBU † = UBU †U AU † ⇔ [ Ã, B̃] = 0,
the two matrices commute over any basis. Then, the commuting observables are
compatible, while non-commuting ones are not.
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13.9.1 Canonical Transformations in Quantum Mechanics

An immediate consequence of the above comments is that a unitary transformationU
preserves the commutation rules; this is like the classical canonical transformations
that preserve the Poisson brackets. U gives an equivalent description of the same
physics. It can be a mere change of reference, but in several cases, it is a sort of deus
ex machina which leads to the solution of otherwise intractable problems.
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Anymeasurement of anobservable Q̂must yield an eigenvalueλof Q̂ (solution
to the eigenvalue equation Q̂|Ψλ〉 = λ|Ψλ〉). The measurement prepares the
system in a state in which Q̂ = λ. If the system is in a state |Φ〉, the probability
of a particular λ is P(λ) = 〈Φ|Ψλ〉|2.

Note that the system might have a large number of degrees of freedom, yet one can
make a measurement involving one of them, like one component of angular momen-
tum, which has an eigenvalue equation depending on a single angle φ. If |Φ〉 is
an eigenstate belonging to a discrete eigenvalue λ, P(λ) = 1; in such cases, Quan-
tum Mechanics gives certainties. Otherwise, after the measurement Φ collapses
in an eigenstate of the operator, and if the measurement is repeated immediately
(i.e., before the system evolves) the result is again λ. Quantum Mechanics gives no
information about the way in which the interaction with the classical measurement
apparatus produces the collapse, which is considered as a sort of instantaneous evo-
lution which is outside the scope of the Scrödinger equation. Many people dislike the
fact that the observer is not a part of the story. As an alternative to the collapse, Hug
Everitt proposed a many-worlds interpretation, in which all the possible outcomes
of the measurement take place in some Universe and the measurement takes us to
one of these. This idea has influential supporters and opposers. But, while we must
be ready to accept unobservable mathematical tools like vector potentials and wave
functions, the description of the reality should not depend on unobservable parts of
the reality itself. Science is not compatible with occultism. Thus, it appears to me
that the remedy is worse than the disease.

© Springer International Publishing AG, part of Springer Nature 2018
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14.1 Reasons Why the Set Must be Complete

Since the measurement must necessarily return some value, this postulate requires

∑

λ

|〈Φ|Ψλ〉|2 =
∑

λ

P(λ) = 1;

this demands the expansion

|Φ〉 =
∑

λ

|Ψλ〉〈Ψλ|Φ〉.

Therefore, we must assume the completeness

∑

λ

|Ψλ〉〈Ψλ| = 1.

The formalism works smoothly in most cases, but sometimes one must use it with
a proper choice of the function space and physical vision. For example, x is an
observable. We must distinguish the variable x , the operator x̂ , and the eigenvalue
that is the result of a measurement; for clarity, let us call x ′ the eigenvalue. Letting
ϕ(x ′)(x) denote the eigenfunction, the eigenvalue equation reads as

x̂ϕ(x ′)(x) = x ′ϕ(x ′)(x).

Now,ϕ(x ′)(x) = δ(x − x ′) does not belong to L2 but to the space of the distributions.
This also provides the required complete set, since

∀ψ, 〈ϕ(x)|ψ〉 =
∫

dx ′ϕ(x)(x ′)ψ(x ′) = ψ(x).

But δ(x − x ′) is not a normal wave function, and, for instance, we cannot take the
square modulus. The difficulty stems from the fact that x is a continuous variable,
and it is impossible to make a measurement giving the position of a particle quite
exactly; that would require infinite energy.

With this proviso, we must be ready to work with discrete and continuous observ-
ables. In the discrete case, the eigenvalue equation reads as Q̂|en〉 = λn|en〉, with
n = 1, 2, 3, . . . , and 〈em |en〉 = δmn; besides, |Ψ 〉 = ∑

n cn|en〉 with cn = 〈en|Ψ 〉.
Then, P(n) = |cn|2 is the probability of the eigenvalue λn . One notable example is
provided by angular momentum. Any direction can be taken as the z axis, and L̂ z is
the orbital angular momentum operator.1 Any measurement must return hm

2π , where
the azimuthal quantum number m is an integer.

1The spin angular momentum will be introduced in Chap.18.

http://dx.doi.org/10.1007/978-3-319-71330-4_18
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In the continuous case, the eigenvalue equation reads as Q̂|ek〉 = λk |ek〉, with
−∞ < k < ∞, but 〈eh |ek〉 = δ(h − k); besides, |Ψ 〉 = ∫

dkck |ek〉, where ck =
〈ek |Ψ 〉. So, dP = |ck |2dk is the probability of finding the eigenvalue within dk
from λk .

We have just discussed the operator x̂ ; as another example, we may take the
momentum p̂, having eigenfunctions ep(x) = eikx√

2π
, where p = �k. The p component

of |Ψ 〉 is cp = 〈ep|Ψ 〉 = ∫ ∞
−∞ ep(x)Ψ (x)dx = Ψ (p, t); this is the wave function in

momentum space.



Chapter 15
Postulate 4

The time evolution of ψ is governed by the Schrödinger equation

i�
∂ψ

∂t
= Ĥ(t)ψ(t), (15.1)

where Ĥ(t) is the Hamiltonian.

15.1 Time Derivative of an Observable and F = ma

I anticipate here that this statement (like all the postulates) holds for single particles
and many particle systems as well (although in the latter case we have to specify in
later chapters how the equation works in detail.)

The Schrödinger equation is first-order in time; therefore, ifψ is given at one time,
it can be evolved in the future or in the past at all times. A second initial condition
that is necessary in the classical case is not needed. It is also second-order in space
variables, which implies that the theory is not acceptable from the standpoint of
Relativity. Proper extensions (Klein–Gordon equation for spinless particles, Dirac
equation for spin 1

2 Fermions, Maxwell equations for Photons, the Proca equation
for massive spin-1 particles, and so on,) are known since a long time; they are quite
important, but do not spoil the relevance of the non-relativistic approximation to
many interesting phenomena.

Note that even the matrix elements of time-dependent operators generally depend

on the time because of the evolution of the wave function. The derivative d Q̂
dt of an

operator Q̂ is by definition an operator that satisfies:

© Springer International Publishing AG, part of Springer Nature 2018
M. Cini, Elements of Classical and Quantum Physics,
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〈
Ψ |d Q̂

dt
|Ψ

〉
≡ d

dt

〈
Ψ |Q̂|Ψ

〉
=

〈
Ψ | ∂

∂t
Q̂|Ψ

〉
+

〈
∂

∂t
Ψ |Q̂|Ψ

〉
+

〈
Ψ |Q̂| ∂

∂t
Ψ

〉
.

Using the Schrödinger equation one finds �|ψ̇〉 = −i H |ψ〉 =⇒ �〈ψ̇| = i〈ψ|H, and
so,

d Q̂

dt
= ∂ Q̂

∂t
+ i

�
[Ĥ , Q̂]. (15.2)

We know that in Classical Physics, the evolution of a function F of the canonical
variables is given by a similar equation, namely, Ḟ = ∂F

∂t +{F, H}. The commutators

replace the Poisson brackets and, if ∂ Q̂
∂t = 0, the operators that commute with the

Hamiltonian are conserved. For example, consider a particle in 1d in a potential;
Ĥ = p̂2

2m + V (x). The velocity is dx̂
dt = i

�
[Ĥ , x̂] = p

m , as expected. So, we find

mẍ = F̂, (15.3)

where F̂ = − dV
dx is the force. The Newtonian equation of motion is still valid! Albeit,

with a different interpretation, of course.

15.1.1 Energy-Time Uncertainty

The uncertainty principle of Sect. 13.3 does not involve the time, since there is no
Hermitean operator for t. However, consider the uncertainty principle,

(ΔA ΔB)2 ≡ σ2
Aσ

2
B ≥

(
〈ψ|[ Â, B̂]|ψ〉

2i

)2

,

for A = Ĥ , the Hamiltonian, B = Q̂, where Q̂ is a time-independent observable.
The commutator with H appears in (15.2), so one finds that

ΔEΔQ ≥ 1

2
�| < Ψ |dQ

dt
|Ψ > |. (15.4)

The derivative of Q is due to the evolution of the wave packet. If for |Ψ >,we choose
an eigenstate of H , there is no evolution and the derivative vanishes. For a system
with a continuous spectrum, this never happens; experimentally, |Ψ > is always a
wave packet. Suppose that someone tries to devise an experiment in which the wave
packet is prepared and then Q is measured so fast that the evolution barely begins.
Then,

ΔQ ≈<
dQ

dt
> Δt.

http://dx.doi.org/10.1007/978-3-319-71330-4_13
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Putting this into (15.4), one finds

ΔEΔt >
1

2
�. (15.5)

One cannot have a small Δt and simultaneously an arbitrarily small ΔE ; being
fast requires mixing different energies. Conversely, a well-defined energy requires
an experiment of sufficient length. This is the energy-time uncertainty principle.
Mathematically, this principle reflects known properties of the Fourier transform. A
finite piece of a sinusoid mixes all frequencies.

Only long-lived atomic states have sharp energies; therefore, atomic clocks use
so-called forbidden transitions, which actually take place but take long time. Several
years ago, an error of one second in one million years was claimed. In 2015 a
metrology laboratory at Riken in Japan has built a clock which misses a second in
15 billion years, which is longer than the age of the Universe.

Problem 26 A particle is in the ground state of an oscillator with Hamiltonian
H [1] = p2

2m + 1
2mω2

0x
2. Calculate the probability P(η) that it is in the ground state

of a harmonic oscillator with Hamiltonian H [η] = p2

2m + 1
2m(ηω0)

2x2.

Solution 26 Using

ψ0(x) = 1√
x1

√
π
e
− x2

2x21 ,

with x2η = �

mηω
= x1

η
, letting 1

x2a
= 1

2 (
1
x21

+ 1
x2η

), one finds

〈ψη|ψ1〉 =
√

πxa√
πx1xη

= √
2

η
1
4√

1 + η

and therefore

P(η) = 2
√

η

1 + η
= 2√

η + 1√
η

.

15.1.2 Adiabatic and Quasi-adiabatic Evolution

The adiabatic theorem (Kato 1949) deals with the solution of the S.E. with a time-
dependent Hamiltonian H(t) in the case of a discrete and non-degenerate spectrum.
The theorem says that if the system is prepared in the nth eigenstate and the evolution
of H is sufficiently slow, then the system will remain forever in the nth eigenstate.
The Kato theorem has many important and far reaching consequences. The reader
could be surprised by this statement, since the requirement that the spectrum be
discrete and non-degenerate looks very restrictive. In fact, this limitation can be
circumvented by Gell-Mann and Low, and the many body Green’s function theory of
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the electron liquid has been formulated as if the Coulomb interaction were turned on
adiabatically, starting fromanon-interacting system in the far past.Other reasonswhy
adiabatic treatments are important will be apparent in Chap.23. Since the theorem
is so plausible I omit the proof, which may be found elsewhere1.

It is important to investigate the relation between the solution of the time-
dependent S.E. and the complete set of solutions of the stationary state equation
with the instantaneous Hamiltonian H(t), namely,

H(t)φn(t) = εn(t)φn(t). (15.6)

Let us consider the evolution between time 0 and time t . Substituting the formal
expansion

ψ(t) =
∑
n

αn(t)φn(t) exp

[−i

�

∫ t

0
εn(t

′)dt ′
]

, (15.7)

we readily find the condition

∑
n

(α̇nφn + αnφ̇n) exp

[−i

�

∫ t

0
εn(t

′)dt ′
]

= 0. (15.8)

To find the coefficients, we take the scalar product with the instantaneous φk(t). We
obtain

α̇k = −
∑
n

αn〈φk |φ̇n〉 exp
[−i

�

∫ t

0
(εn(t

′) − εk(t
′))dt ′

]
. (15.9)

We need 〈φk |φ̇n〉; to this end, we differentiate (15.6) and scalar multiply by φk(t),
for k 
= n. The result is

〈φk |φ̇n〉 = 〈φk | ∂H
∂t |φn〉

εn − εk
. (15.10)

This result allows us to estimate the amplitude to jump to different states when the
adiabatic condition is weakly violated. We see that if 〈φk | ∂H

∂t |φn〉 is small compared
to the energy separation εn − εk, the system has little chance to be found in k if it is
prepared originally in n. Now it is verified that if the spectrum is discrete and non-
degenerate, a finite gapmust be overcome before the system canmake any transition;
therefore, any evolution can be done so slowly that the system remains in n all the
time.

1The original paper by Kato is somewhat involved, but for a simple proof see D.J. Griffiths, “Intro-
duction to Quantum Mechanics”, Prentice Hall.

http://dx.doi.org/10.1007/978-3-319-71330-4_23
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15.1.3 Sudden Approximation

Suppose one knows the (one-body or many-body) normalized wave function ψ(t0)
of some system and the Hamiltonian H(t0) at some time t0; if H stays constant
for t > t0, we can write down immediately the evolution of ψ(t0) in terms of the
eigenfunctions φn of H at time t0, setting � = 1,

ψ(t) =
∑
n

φne
−iεn(t−t0)〈φn|ψ〉, (15.11)

where the sum can imply an integration in the case of a continuus spectrum. Typically,
this result is useful if ψ(t0) is the wave function resulting from the evolution of the
system for times before t0 with a different Hamiltonian H ′. This means that we are
considering a model in which the Hamiltonian changes abruptly at time t0, inevitably
leaving the system in a mixture of eigenstates of the new Hamiltonian. While it is
clear that Hamiltonians cannot really change instantly, there are many situations in
which such a scheme is very useful. For instance, when a many-electron atom in its
ground state suffers a nuclear decay that leads to a change of the atomic number,
the change is fast enough to be considered as practically instantaneous when one
wishes to calculate the probability that the atom gets ionized in the process; indeed,
the characteristic electronic times are long compared to those of the much more
energetic nuclear transitions. In addition, the sudden approximation offers a practical
scheme for the solution of arbitrary time-dependent problems by am iteration of the
above idea. Instead of solving the problem with H(t) for t ∈ (ti , t f ), one divides
the time interval, introducing intermediate times such that ti < t1 < t2 < · · · < t f ,
approximating H(t) with a constant Hamiltonian in each sub-interval. If each sub-
interval is short compared to the characteristic times of the system and of the change
of the Hamiltonian, this is a convenient, practical way to compute the result.

Problem 27 A particle of mass m in 1d is in the ground state of the potential well:

V (x) =
⎧⎨
⎩

∞ per x < − a
2 ,

0 per 0 < x < a,

∞ per x > a
2 .

At time t = 0, the potential becomes V (x) = 0 everywhere. Write the wave function
ψ(x, t) at all times t > 0.

Solution 27 Since ψ0(x) =
√

2
a sin(

π(x− a
2 )

a ) and the plane wave is

φk(x, t) = ei(kx−ω(k)t)

√
2π

,

con

�ω = (�k)2

2m
,
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the expansion ψ0(x) = ∫
dkφk(x)〈φk |ψ0〉 requires that

〈φk(x, 0)|ψ0(x)〉 = α(k).

Using

α(k) =
∫ a

2

− a
2

dx
e−ikx

√
πa

sin

(
π(x − a

2 )

a

)
= 2

√
πa

cos( ak2 )

a2k2 − π2
,

one obtains

ψ(x, t) =
∫ ∞

−∞
α(k)

ei(kx−ω(k)t

√
2π

dk =
√
a

2

∫ ∞

−∞

cos( ak2 )

a2k2 − π2
ei(kx−ω(k)t)dk.

15.1.4 Galileo Transformation

InChap.6,weperformed thought experiments using the station and the train frames to
introduce the Lorentz transformation. Here, we can do the same in the non-relativistic
case. IfψS(x, t) is the wave function of a particle in an inertial reference (the station),
what is the wave function ψT (x′, t) in a reference (the train) moving with speed
v? The Galileo transformation x = x′ + vt, t = t ′ applies. For a free particle,
p = p′ + mv, which implies that ε p = ε p′ + v. p′ + 1

2mv2.
This leads to

ψ = ψ′ exp
[
imv

�
x ′

]
exp

[
imv2t

2

]
. (15.12)

Thus, the transformation of the wave function requires a phase factor exp[ imv2t
2 ];

since this is p-independent, the same law applies to any wave packet. In the presence
of a potential, the transformation still applies in the present form if the potential is
scalar, that is, independent of the reference. Otherwise, one should calculate the wave
packet with the potential in the system of the station and then transform the result to
the train. We have found one more use for phase factors.

15.1.5 Gauge Invariance

Quantum Mechanics must be formulated in terms of complex wave functions, and
one could reasonably expect that much of the information about the state of a particle
must reside in the phase. However, strikingly, for a charged particle we can change
the phase as we please through a transformation

ψ(r, t) → ψ′(r, t) = ψ(r, t) exp
(
ieχ(r, t)

�c

)
, (15.13)

http://dx.doi.org/10.1007/978-3-319-71330-4_6
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where χ is an arbitrary function of space-time. Such a transformation entails pψ →
( p − e

c A)ψ′ and i� ∂
∂t ψ → ( ∂

∂t + e
c

∂χ
∂t )ψ

′.
The Schrödinger equation for a charge in a field is

Hψ =
(

( p − eA
c )2

2m
+ eV

)
ψ = i�

∂

∂t
ψ, (15.14)

so all that happens is a gauge transformation to new potentials A′ = A +
gradχ(r, t), V ′ = V − 1

c
∂χ
∂t . In the classical equations of motion, only the fields

appear and the gauge invariance of the theory is obvious; instead, the wave function
is affected by the change; however, the matrix elements of the coordinates calculated
withψ are identical to those calculated withψ′; and those of the mechanical momen-
tum p− e

c A calculated with ψ are identical with those of the mechanical momentum
p − e

c (A + ∇χ) calculated with ψ′. Consequently, the Physics is unaffected by the
change.

15.1.6 No Cloning Theorem

The concept of probability in quantum theory refers to a distribution of results of
measurements on many samples. The need for many identical samples is evident
since the act of measurement collapses the wave function. This could be avoided if
we could clone a given sample, with wave function |φ〉 i.e. if we could produce many
copies in the same quantum state without knowing it. The copies would conceivably
be obtained by startingwith systems havingwave functions |αi 〉, i = 1, . . . N ,which
depend on the same variables as φ.

A quantum cloning machine is defined to operate in analogy with a photocopy
machine, except that the contents of the original page is assumed unknown. Initially
one has an unknown quantum state |φ〉. For the sake of argument I assume here that
it is a spin, but it could be anything. Besides, one has n spins |αi 〉, i = 1, . . . n which
have the same role as the white sheets. Here, E is the state of the machine and the
environment. So, the initial state of the system at time t = 0 is

|sφ〉 = |E〉|φ〉|α1〉 · · · |αn〉.

The machine Hamiltonian has an evolution operator U such that at the end we must
have

U (t)|sφ〉 = U (t)|E〉|φ〉|α1〉 · · · |αn〉 = |Eφ〉|φ〉|φ〉 · · · |φ〉,

where Eφ is the final state of the machine and the environment. In 1982Wootters and
Zurek2 showed that it is impossible to make such a machine. The essential reason

2Wootters, W.K. and Zurek, W.H.: A Single Quantum Cannot be Cloned. Nature 299 (1982), pp.
802–803.
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is that one starts with a state α such that 〈φ|α〉 < 1 and we want to evolve it until
〈φ(t)|α(t)〉 = 1; however 〈φ(t)|α(t)〉 = 〈φ(0)|U †(t)U (t)α(0)〉 where U is the
evolution operator; but the evolution is unitary and so 〈φ(t)|α(t)〉 = 〈φ(0)|α(0)〉.
This simple argument is incomplete because it does not take into account the evolution
of themachine and of the environment. Therefore the proof is slightly longer. Suppose
that besides |φ〉 we also clone a second state |ψ〉. The initial state would be

|E〉|ψ〉|α1〉 · · · |αn〉

and the final state

U (t)|sψ〉 = U (t)|E〉|ψ〉|α1〉 . . . |αn〉 = |Eψ〉|φ〉|φ〉 · · · |φ〉.

The overlap would be 〈sφ|spsi 〉 = φ|ψ〉 at t = 0; finally it should become
〈sφ|U †U |sψ〉 = 〈Eφ|Eψ〉〈φ|ψ〉n. Since U is unitary, the overlap is the same as the
initial one. Hence we get:

〈φ|ψ〉 = 〈Eφ|Eψ〉〈φ|ψ〉n → 1 = 〈Eφ|Eψ〉〈φ|ψ〉n−1

for any n, and this cannot be true. Therefore, U does not exist.

15.2 Feynman Path Integral Formulation of Quantum
Mechanics

At the end of the 40s, Richard Feynman3 proposed the path integral formulation of
Quantum Mechanics, based on a remark by Dirac. It is equivalent to the Heisenberg
and Schrödinger formulations, but reveals in a clearerway the connection toClassical
Mechanics. It is important in field theory, but for simplicity, I discuss its application
to one-particle problems.

We introduced the quantum evolution operator U (0, t) from time 0 to time t in
Eq. (10.8); now, consider the amplitude A(t) = 〈a|U (0, t)|b〉 for the particle to go
from state a at time t = 0 to a state b at time t . By using the Group property (10.11)
of the evolution operator, one can slice the time interval (0, t) finely to N � 1 sub-
intervals of small duration ε, and the limit N → ∞, ε → 0 is understood at the end
of the procedure. For small ε, one can safely assume that H is constant within each
slice even if H = H(t). Consequently, by the reasoning that led us to Eq. (10.12),
U (nε, (n + 1)ε) = exp(−i Hε), where H is understood to be taken at the time slice.

The result is a terrific multiple integral:

A(t) =

3Richard Feynman (New York City 1918–1988) won the Nobel in 1965 for the invention of his
diagrams and his contributions to Quantum Electrodynamics.

http://dx.doi.org/10.1007/978-3-319-71330-4_10
http://dx.doi.org/10.1007/978-3-319-71330-4_10
http://dx.doi.org/10.1007/978-3-319-71330-4_10
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dq1 . . .

∫
dqn−1〈a|e−i Hε|qn−1〉〈qn−1|e−i Hε|qn−2〉 · · · 〈q2|e−i Hε|q1〉〈q1|e−i Hε|b〉.

Here, the intermediate statesqi are taken to be position eigenstates, that are a complete
set, and in the limit ε → 0 this expression is a path integral. A(t) is a sum of all the
contributions that correspond to possible choices of the values of qn at the nth slice,
so it is a sum over stories. For each story, we can also assign the quantum particle
an instantaneous velocity by setting

qn+1 − qn = εq̇.

Note, however, that many stories are not plausible. A small ε does not guarantee
that neighboring q values are close. Like the diffusion equation, the SE can take
the particle to the Andromeda galaxy in any short time (albeit with a very small
amplitude), so that the paths that interfere in giving the final answer need not be
(and are not) regular and physically reasonable. Paths involving velocities exceeding
c must be included. This type of monster multiple integrals was introduced by N.
Wiener in the theory of the Brownian motion.

We can make contact with the classical Lagrangian formalism as follows. The
Hamiltonian can be written as the sum H = T + V of a kinetic energy T = T (p),
where p are the canonical momenta, plus a potential energy V (q). To proceed, we
write exp(−i Hε) = exp(−iT ε) exp(−iV ε) + O(ε2) and then neglect O(ε2) since
ε → 0 at the end. Then, introducing a set of momentum eigenstates, we write the
n-th step as:

〈qn+1| exp(−iT ε) exp(−iV ε)|qn〉 =
∫

dpn〈qn+1|pn〉〈pn | exp(−iT ε) exp(−iV ε)|qn〉.

Now, using 〈q|p〉 = eipq , we let the kinetic energy act on momentum eigenstates
and the potential energy act on position eigenstates. One finds that 〈qn+1| exp(−iT ε)
exp(−iV ε)|qn〉 = ∫

dpneipn(qn+1−qn)e−iεH(p,q).

Putting all together,

A(t) =
∏
n

∫
dq(tn)dp(tn)

2π
exp

{
i
[
(pn(qn+1 − qn) − H(pn, qn)ε

]}
. (15.15)

Note that the product produces a summation at the exponent:

A(t) =
[∏

n

(∫
dq(tn)dp(tn)

2π

)]
exp[i

∑
j

(p j (q j+1−q j −H(p j , q j )ε]. (15.16)
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Introducing a path-integral notation for the infinite-dimensional integration, and
the velocity, with ε → dτ , we obtain:

A(t) =
∫

DqD
( p

2π

)
exp[i

∫ t ′

t
dτ (pq̇(τ ) − H(p, q, τ )]. (15.17)

Under some conditions one can work out the momentum integrals. In particular, if
the Hamiltonian is H = p2

2m + V (q), the exponent in the integrand can be cast in the

form − (p−q̇)2

2m + L(q, q̇) where of course L(q, q̇) = p2

2m − V (q) is the Lagrangian.

Then the integrations are all of the Gaussian type
∫ ∞
−∞ dxexp(− ax2

2 ) =
√

2π
a , for

a > 0 and

A(t) =
∫

Dq exp[i
∫ t ′

t
dτ L(q, q̇)]. (15.18)

Consider two configurations q(t1) and q(t2) of a system. For each virtual path
connecting them, one can calculate the action integral. TheEuler–Lagrange equations
select the allowed classical evolutions of the system. InQuantumTheory, each virtual
path contributes to the wave function the amount:

ΔΨpath ∝ exp

[
2πi S

h

]
.

For a particle going from x1(t1) to x2(t2) in the laboratory, one must consider all
trajectories, in order to get the exact result. For motions involving actions �h the
paths that make the action stationary give a dominant contribution. In the continuum
limit and in 1 dimension, the above amplitude A(t) is the amplitude P(x ′, t ′, x, t)
that the particle is in x at time t if it is in x ′ at time t ′. Assuming, for simplicity, a
time-independent Hamiltonian, and setting � = 1,

P(x ′, t ′, x, t) = 〈x ′|e−i H(t−t ′)|x〉. (15.19)

The corresponding Green’s function, defined as

G(x ′, t ′, x, t) = i P(x ′, t ′, x, t)θ(t − t ′), (15.20)

satisfies

(H − i
∂

∂t
)G = δ(x − x ′)δ(t − t ′). (15.21)

In the case of a free particle, one finds (reinserting �)

P(x ′, t ′, x, t) =
(

m

2πi�(t − t ′)

) 1
2

exp

(
im(x − x ′)2

2�(t ′ − t)

)
. (15.22)
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Problem 28 Obtain Equation (15.23) by the path integral method.

Solution 28 Start directly from the above A(t). All the integrals involved are
Gaussian.

All this is immediately extended to 3 dimensions. Then,

P(x′, t ′, x, t) =
(

m

2πi�(t − t ′)

) 3
2

exp

(
im(x − x′)2

2�(t ′ − t)

)
. (15.23)

This formalism is well-suited to find simple approximations to problems like the
diffraction by a double slit, where the dominating paths are evident (Fig. 15.1). An
electronwith energy E is emitted fromG at time t = 0; the amplitude to arrive at time
t1 in slit S1 and hits the detector D at time T is G(s1, t1,G, 0)G(D, T, S1, t1), and
the total amplitude to go to point D is 〈D, T |G, 0〉 = ∫ ∞

−∞ G(S1, t1,G, 0)G(D, T,

S1, t1)dt1. This integral is a convolution. Since G(S1, t1,G, 0) = i
�
θ(t1)(

m
2πi�t1

)
3
2

exp( ima2

2�t1
) has the transform −1

4π
eika

a , where k =
√

2mE
�

and the transform of

G(D, T, S1, t1 is −1
4π

eikb

b , it is easy to transform back the product of the transforms
with the result that the amplitude to go through S1 and arrive at time T is

〈D, T |G, 0〉S1 = Z

T
3
2

a + b

ab
e

im(a+b)2

2�T . (15.24)

In the same way, the amplitude to go through S2 is

〈D, T |G, 0〉 = Z

T
3
2

c + d

cd
e

im(c+d)2

2�T . (15.25)

These amplituds must be summed and interfere, giving us

〈D, t |G, 0〉 = |〈D, T |G, 0〉S1 + 〈D, T |G, 0〉S2|2. (15.26)

If a, b, c, d are about the same, the probability is proportional to | exp( imL2
1

2�T ) +
exp( imL2

2
2�T ) with L1 = a + b, L2 = c+ d. Since m L2

1−L2
2

T = 2p(L1 − L2), where p is

Fig. 15.1 The geometry of
the double slit experiment
and of the Bohm–Aharonov
effect
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the momentum, the probability turns out to be proportional to 1+ cos( p
�
)(L1 − L2).

In the presence of a magnetic flux F the Lagrangian has an additional term − e
c A.v,

where v is the velocity. Now,

〈D, T |G, 0〉 = Z

T
3
2

c + d

cd
e

im(c+d)2

2�T exp

(−ie

c�

∫
C1

dx.A
)
exp

(−ie

c�

∫
C2

dx.A
)

.

(15.27)

where C1 is a path through G,S1 and D and C2 is a path through G, S2 and D. This
goes like 1 + cos[ m

2�T (L2
1 − L2

2) − eΦ
c� ]. Thus, the Bohm–Aharonov effect is borne

out by this formalism.



Chapter 16
The Quantum Harmonic Oscillator

This is not just another one-dimensional example. It is a
fundamental piece of the general theory.

The oscillator Hamiltonian in the coordinate representation is:

Ĥ = p2

2m
+ 1

2
mω2x2. (16.1)

We know (Eq. 2.103) that by a canonical trasformation it can be cast in the simpler
form

H̃ = Aω, (16.2)

where A is the amplitude of the oscillation. In Classical Mechanics, the amplitude
of the oscillation is arbitrary, but in Quantum Mechanics, there is a natural scale of
energies given by E ∼ �ω. Setting

mω2x2
0 ∼ �ω,

we realize that there is also a characteristic length

x0 =
√

�

mω
.
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16.1 Coordinate Representation

At the moment, it is not clear how to deal with the form (16.2) but from (16.1) the
Schrödinger Equation (S.E.) for the stationary states Ĥψ(x) = Eψ(x) gives us

d2

dx2
ψ = m2ω2

�2
x2ψ − 2mE

�2
ψ, (16.3)

that is,
d2

dx2
ψ = x2

x4
0

ψ − 2mE

�2
ψ.

Introducing the dimensionless length q by x = x0q,

1

x2
0

d2

dq2
ψ = q2

x2
0

ψ − 2mE

�2
ψ, (16.4)

the S.E. becomes
d2ψ
dq2 = (q2 − 2ε)ψ, (16.5)

where

ε = E

�ω
. (16.6)

is the dimensionless energy. Even in the Hamiltonian (16.1) one can do a similar
simplification. We eliminate m in favor of x0, by m = �

ωx2
0
, thus

Ĥ = �ω

2

[
− d2

dq2
+ q2

]
, (16.7)

which agrees with (16.5). By inspection,

ψ0(q) = 1
4
√

π
e− q2

2 (16.8)

is a solution of the S.E. and is normalised, i.e.,
∫ ∞
−∞ ψ(x)2dx = 1. In terms of x ,

ψ0(x) = Ce
− x2

2x2
0 ,

with

C =
(mω

π�

) 1
4

up to a phase factor.
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This simple solution is the ground state, as we shall see. To find the general
solution, we set

ψ(q) = h(q)e− q2

2 ;

then, by substituting in (16.5) we find:

h′′ − 2qh′ + (2ε − 1)h(q) = 0. (16.9)

By inspection, h(q) ∝ q is a solution with ε = 3
2 , and one can verify easily that

h(q) ∝ 4q2 − 2 is another solution, with ε = 5
2 . This suggests that a systematic

search for polynomial solutions is in order.

Polynomial Solutions

Setting

h(q) = a0 + a1q + a2q
2 + a3q

3 + · · · + aNq
N =

N∑
j=0

a jq
j ,

and putting into (16.9) we get the recurrence relation:

( j + 1)( j + 2)a j+2 − 2 ja j + (2ε − 1)a j = 0, j = 0, . . . , N − 2.

Hence, by

a j+2 = 2 j + 1 − 2ε

( j + 1)( j + 2)
a j j = 0, . . . , N − 2. (16.10)

we can find all the even terms from a0 and all the odd ones from a1. To systematically
find all the polynomial solutions, let us put in (16.10) the condition that aN+2 = 0;
this gives us a solution of degree N ;

The condition 2N + 1 − 2εN = 0 with (16.6) yields the eigenvalues1

EN = (N + 1
2 )�ω. (16.11)

The Gaussian solution deduced above was the ground state N = 0; the lowest
possible energy is called zero point energy; classically, the oscillator could be fixed at

1The recurrence formula (16.10) also gives us a transcendental solution, but this is not acceptable
for a wave function. For j → ∞, (16.10) becomes a j+2 ∼ 2

j a j ; this is solved by a j ∼ C
(
j
2 )! , with

some constant C . In the even case, h = ∑
j=2k

C
(
j
2 )!q

j = C
∑

k
1
k!q

2k = Ceq
2
; this asymptotic

behavior at large q leads to ψ → ∞ for x → ∞, and such a solution cannot be normalized. In
the odd case, h = ∑

j=2k−1
C

(
j
2 )!q

j = C
∑

k
1

(k− 1
2 )!q

2k−1, and since h > C
∑

k
1
k!q

2k−1 ∼ C
q e

q2
,

even this solution cannot be normalized.
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the origin, but this would violate the uncertainty principle. The characteristic energy
�ω is the difference �ω between consecutive energy levels.

Hermite Polynomials

Setting 2N + 1 − 2ε = 0 in (16.9), we find the Hermite equation

h′′
N (q) − 2qh′

N + 2NhN (q) = 0; (16.12)

the (16.10) relations become

a j+2 = 2 j − 2N

( j + 1)( j + 2)
a j , j = 0, . . . , N − 2,

and the solutions are Hermite polynomials hN (q); these are orthogonal in the sense
that ∫ ∞

−∞
hm(x)hn(x)e

−x2
dx = 0, m �= n.

The first few are: h0 = 1, h1(q) = 2q, h2(q) = 4q2 − 2, h3(q) = 8q3 −
12q, h4(q) = 16q4 − 48q2 + 12.

I report without proof the following interesting formulas:

dHn(x)

dx
= 2nHn−1(x) (16.13)

Hn+1(x) = 2xHn(x) − 2nHn−1(x). (16.14)

In addition, the Rodrigues formula holds:

Hn(x) = (−1)n exp(x2)

(
d

dx

)n

exp(−x2). (16.15)

This formula is useful to work out the normalization condition. First, one integrates
by parts (16.1) n times to show that

∫ ∞

−∞
e−x2

Hn(x)
2dx =

∫ ∞

−∞
e−x2 dnHn(x)

dxn
dx .

Then from (16.13) one obtains that dn Hn(x)
dxn = 2nn! So, the normalized wave function

of the nth level of the harmonic oscillator is:

ψn(x) = 4

√
mω

π�

exp[−mωx2

2�
]√

2nn! Hn

(
x

√
mω

�

)
. (16.16)
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16.2 Number Representation and Coherent States

It is important to solve again the quantum oscillator by the neat and powerful operator
method which is basic in field theory. One would be tempted to factor the Hamiltonian

H = �ω

2

[
− d2

dq2
+ q2

]
=?? = �ω

2

(
d

dq
+ q

) (
− d

dq
+ q

)
, (16.17)

but this is wrong! d
dq and q do not commute, since

[
d

dq
, q

]
−

= 1.

However, we can fix it. Introducing the annihilation operator

a = 1√
2

(
q + d

dq

)
, (16.18)

and its Hermitean conjugate, called creation operator

a† = 1√
2

(
q − d

dq

)
, (16.19)

we obtain

H = �ω

(
a†a + 1

2

)
. (16.20)

Still, the operators do not commute, since

[a, a†]− = 1, (16.21)

but now the Schrödinger equation takes the form

(
a†a + 1

2

)
ψ = εψ. (16.22)

If ψ is a solution, a†ψ is also a solution, with eigenvalue ε+1, since the commutation
rule yields a†aa† = a†a†a + a†, and so

(
a†a + 1

2

)
a†ψ =

(
a†[1 + a†a] + a† 1

2

)
ψ

= a†(a†a + 1/2 + 1)ψ = a†(ε + 1)ψ = (ε + 1)a†ψ.
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Moreover, aψ is another solution, with energy eigenvalue ε − 1; to see that, in

(
a†a + 1

2

)
aψ =

(
a†aa + 1

2
a

)
ψ,

we put a in evidence on the left with the help of the commutation rule:

=
(
aa†a − a + 1

2
a

)
ψ = a

(
a†a + 1

2
− 1

)
ψ = (ε − 1)aψ.

Evidently, a† creates excitations and a destroys them; in field theories like Quan-
tum Electrodynamics (QED) the oscillator is not observable at all. We observe, create,
and absorb the excitations, which are photons! No excitations can be destroyed in
the ground state. Accordingly, the ground state is given by aψ0 = 0. We can verify
that this is the same ground state as the one in Eq. (16.42). Indeed, in x0 units,

0 =
(
x + i

p

�

)
ψ0 =

(
x + d

dx

)
ψ0.

Integrating, we recover ψ0 = e− x2

2 .
In the original variables,

a† = 1√
2

[
x
x0

− i x0 p
�

]
,

a = 1√
2

[
x
x0

+ i x0 p
�

]
.

(16.23)

The inverse transformation is:

x = x0√
2
(a + a†),

p = −i�
x0

√
2
(a − a†).

(16.24)

One can check that [p, x]− = −i�.

All the eigenstates can be determined in this formalism by

a†ψn = unψn+1, aψn = vnψn−1,

but we must still find the constants un, vn. To this end, we write the normalization
condition 〈ψn+1|ψn+1〉 = 1; we obtain u2

n = 〈a†ψn|a†ψn〉 = 〈ψn|aa†ψn〉 = (1 + n).
So,

ψn+1 = 1√
n + 1

a†ψn, (16.25)

that is,
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|ψn〉 = 1√
n! (a

†)n|ψ0〉. (16.26)

Similarly, setting aψn = vnψn−1, we obtain from v2
n = 〈aψn|aψn〉 that

aψn = √
nψn−1. (16.27)

Thus, x̂ψn = x0√
2
(
√
nψn−1 + √

n + 1ψn+1) and the matrix of x̂ has elements

xmn = x0√
2
(
√
nδm,n−1 + √

n + 1δm,n+1). (16.28)

Similarly,

pmn = i�
1

x0

√
2
(−√

nδm,n−1 + √
n + 1δm,n+1).

We know that
([ p̂, x̂])mn = (−i�)mn = −i�δmn .

We can verify that, through matrix multiplication, using the Einstein convention (sum
over repeated indices),

([ p̂, x̂])mn ≡ (px − xp)mn ≡ pmkxkn − xmk pkn = −i�δmn . (16.29)

Similarly, one can build the matrices of x̂2, p̂2 and the Hamiltonian in diagonal form:

Hmn =
(
n̂ + 1

2

)
�ωδmn.

It is now a simple exercise to find the eigenstates of the non-Hermitean annihilation
operator. Using a|n〉 = √

n|n − 1〉, one finds that a|ψλ〉 = λ|ψλ〉 is solved by the
normalized state

ψλ〉 = exp

(
−λ

2

)
exp [λa†]|0〉 = exp

(
−λ

2

) ∞∑
n=0

(λa†)n

n! |0〉.

Letting the creator operators act, we find:

|ψλ〉 = exp

(
−λ

2

) ∞∑
n=0

λn

√
n! |n〉. (16.30)

Actually ψλ is called a coherent state and is very interesting for many purposes.
To start with, this solves the shifted oscillator. Suppose we replace the annihilation
operator a by s = a + λ, where λ is a c-number (that is, not an operator). The
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consequence is that s + s† = √
2(q + λ+λ∗√

2
), that is, λ+λ∗√

2
is a shift of the origin; but

since [s, s†]− = 1, the new operators are canonically equivalent to the old ones. The
canonically conjugated Hamiltonian is

H̃ = �ω

[
s†s − λ∗s − λs† + λ2 + 1

2

]
(16.31)

and obviously has the same eigenvalues as H . However, the ground state ψ̃ of H̃ is
not found by sψ̃ = 0 but by (s − λ)ψ̃ = 0. Thus the ground state (i.e., vacuum) is a
coherent state if the Hamiltonian undergoes a shift.

Problem 29 An oscillator is prepared in a state proportional to |ϕ〉 = (a† +a†2)|0〉.
Calculate 〈x〉.
Solution 29 The normalized state is |φ〉 = 1√

3
(a† + a†2)|0〉. Therefore, 〈φ|x̂ |φ〉 =

1
3

x0√
2
〈0|(a + a2)(a + a†)(a† + (a†)2)|0〉 = 4

3
x0√

2
.

The coherent state ψλ has further points of interest. The wave packet (16.30) may be
rewritten more explicitly in terms of the harmonic oscillator wave functions as

ψλ(x, t) = exp

(
−λ

2

) ∞∑
n=0

λn

√
n!ψn(x, t); (16.32)

and the sum can be worked out thanks to the identity

∞∑
n=0

Hn(z)
tn

n! = exp(z2 − (x − t)2). (16.33)

One obtains

ψλ(x, t) = 1√
x0

√
π

exp

(
−1

2

(
x

x0 − λ
√

2

)2
)

exp

(
− i

2
ϕ(t)

)
, (16.34)

where ϕ(t) is a real phase. Thus,

|ψ(x, t)|2 = 1

x0
√

π
exp

⎡
⎣−

(
x − x0λ

√
2 cos(ω0t)

x0

)2
⎤
⎦ (16.35)

keeps its shape during the evolution and oscillates in a way resembling a classical
oscillator. That is the reason why this is called a coherent state: it keeps oscillating in
analogy with the classical oscillator. In the next section it will allow for a quantum
field that is as close as possible to its classical approximation. The main source of
coherent light is the Laser (see Sect. 25.4.1).

http://dx.doi.org/10.1007/978-3-319-71330-4_25
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16.3 Photons

Consider the modes of the electromagnetic field in a box. In the Coulomb gauge
φ = 0, divA = 0, the vector potential corresponding to wave vector k and frequency
ωk is uk(r)e−iωk t + c.c., where uk(r) satisfies

(
∇2 + ω2

c2

)
uk(r) = 0

(i.e., the wave equation) and ∇uk(r) = 0 (the Coulomb gauge). Consider the electric
field amplitude of any monochromatic solution. It can be written as

E(t) = a(t) + a∗(t)
2

, (16.36)

where the complex amplitude a(t) is proportional to exp(−iωt). We can treat the
monochromatic solution as a harmonic oscillator by setting q = a(0)+a∗(0)

2 , p =
a(0)−a∗(0)

2i ; so, E(t) = q cos(ωt)+ p sin(ωt). Here, q and p are the so called quadra-
ture components of the field. We have rewritten the monochromatic solution in terms
of a harmonic oscillator that oscillates in amplitude space rather than in real space
and has no elastic constant and no mass. Up to now the treatment is classical, but we
are ready to quantize the field by imposing [a, a†]− = 1. The quantum expression is

A(r, t) =
∑
k

√
�

2ωkε0
[akuk(r)e−iωk t + a†

ku
∗
k(r)e

iωk t ], (16.37)

where ε0 is the electric permittivity of free space and a†
k , ak creation and annihilation

operators of free space, which merely replace dimensionless amplitudes in what
would be a classical expression; the pre-factor is chosen in such a way that the
energy E = ∫ [ ε0

2 E2 + B2

2μ0
]d3r of a quantum is �ω, as it should be. Note that the

oscillation amplitude of the field corresponding to the x0 of the mechanical oscillator
is thereby specified. Here μ0 is the magnetic susceptivity and B the magnetic field;
the magnetic term is equal to the electric one in vacuo. A rigorous derivation of the
above is outside the scope of this book, but may be found in any book about Quantum
Optics. Many consequences are relevant to the appreciation of Quantum Mechanics,
however. The corresponding electric field is obtained by E = − 1

c
∂A
∂t ,

E(r, t) =
∑
k

√
�ωk

2ε0
[akuk(r)e−iωk t − a†

ku
∗
k(r)e

iωk t ]. (16.38)

First of all, we see that the field is an operator, as every observable should be.
Moreover, it is evident that the vacuum average of each k component E(k) =
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√
�ωk
2ε0

[akuk(r)e−iωk t − a†
ku

∗
k(r)e

iωk t ] vanishes, but E(k)2 does not. Physically this
means that if a field component is measured it is found to oscillate around zero.

16.3.1 Zero Point Energy and Casimir Effect

The physical vacuum contains the zero-point oscillation and the zero-point energy
of all normal modes of the electromagnetic field (and of any other physical field).
The quantum vacuum is full of stuff in turmoil, and in any cube centimeter, there
is infinite energy. This sounds amazing, but does not cause a difficulty like the
ultraviolet catastrophe because it involves an infinite energy difference between the
physical vacuum and an absolute void that does not exist in Nature. Then, one could
believe that this is just formal. However, the zero point fields exist: while the average
electric field is indeed zero, the average square electric field can be measured. These
vacuum fields produce observable consequences. In Schrödinger’s theory, as we shall
see, the 2s and 2p levels of H are degenerate. The relativistic Dirac’s theory removes
some of this degeneracy, but 2S1/2 and 2P1/2 levels remain degenerate. The Lamb
shift of atomic 2S1/2 and 2P1/2 levels was measured in 1947 with great precision
as a splitting of about 1000 MHz. This shift can be calculated in QED (Quantum
Electrodynamics) with similarly great precision. This is due to the fact that the atomic
electrons are acted upon by the vacuum field in addition to the nuclear electric field,
and the vacuum field couples differently with the two states.

Another important consequence is known as the Casimir effect. While we cannot
eliminate the zero point fields, we can change the boundary conditions for the field,
e.g., by placing two mirrors facing each other at a small distance. This produces an
attractive potential that goes with the inverse fourth power of the distance between
the mirrors.

Consider a pillbox with reflecting walls; let the basis be square with side L and the
thickness be s. The modes with k = ( πa

s , πb
s , πc

s ) with integer a, b and c contribute
�ck to the vacuum energy twice (because of the two polarizations). The sum U (s)
diverges. In reality, the reflecting walls can reflect only for �ck < ωp, where ωp is
the plasma energy of the material, of order 10 eV, so the sum diverges to an even
worse degree. But we are interested in the finite difference due to the presence of
the walls. A serious calculation must take into account the dielectric properties of
the material and of its surface. A model calculation can hardly be realistic, but it can
show the finiteness of the effect and its s dependence. Using a cutoff length α to
avoid the divergence,

U (s) = π�c
∞∑

a,b,c

λ(a, b, c) exp(−αλ(a, b, c)), (16.39)
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where λ(a, b, c) =
√

a2

s2 + b2

L2 + c2

L2 is an inverse length. One wishes eventually to
remove the cutoff with α → 0. It is evident that the result must be proportional to
the area L2 and for dimensional reasons. The summation gives us

U (s) = �cπ2L2

2

(
d

dα

)2 (
1

α

1

e
α
s

− 1

)
. (16.40)

Now, if a cavity with a width W is divided in two halves by a mirror, the vacuum
energy is 2U (W2 ). This diverges. Instead, if the mirror is at a distance s from one
wall and W − s from the other, the vacuum energy is U (s) + U (W − s). All these
energies diverge, but the energy cost of shifting the mirror from a distance s to the
middle of the cavity is finite. It is the Casimir energy

C(s) = U (s) +U (W − s) − 2U (
W

2
) ∼ π2

�c

720s3
. (16.41)

More precisely, the attractive force per unit area (1 cm2) between perfect conduc-
tors at distance s is calculated to be 0.013

s4 dyne, and the effect has been confirmed
experimentally. The numerical values in the above derivation cannot be taken too
seriously. By varying the nature of the surfaces and angles, one can control the
Casimir force, which in some cases, can also be repulsive, and perhaps one day,
this will be used to operate nano-engines. The vacuum energy due to all possible
fields is also suspected to be at the origin of the Λ term which produces the dark
energy (Sect. 8.12), but no quantitative theory is available to get from the Planck

length λP =
√

�G
c3 ∼ 1.6 10−35 m and the Planck mass MP ∼ 2.2 10−8 kg to the

estimated energy density of dark energy 10−29 g
cm3 .

16.3.2 Parametric Down-Conversion and Squeezed Light

In the above discussion of the harmonic oscillator, I have emphasized that in the
quantum case, there is a fundamental length x0, which characterizes the eigenstate
wave functions in both real and momentum space. However, it is possible to manip-
ulate the oscillator by putting it in a nonlinear medium in such a way that the wave
functions are scaled. For instance, the wave function of the squeezed vacuum with
squeezing parameter R is obtained from the oscillator ground state (16.8) by scaling

ψR(q) =
√
R

4
√

π
e− (Rq)2

2 . (16.42)

It is, of course, a normalized solution, i.e.,
∫ ∞
−∞ ψR(x)2dx = 1. The scaling modifies

the variances, with Δq2 = 1
2R2 ,Δp2 = R2

2 , in such a way that the uncertainty in one

http://dx.doi.org/10.1007/978-3-319-71330-4_8
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of the quadratures (x or p) is decreased but the uncertainty in the other quadrature is
increased so that the Heisenberg uncertainty principle is preserved.

It is possible to squeeze the position of an oscillator by producing the state |ψ〉 =
|0〉 − s√

2
|2〉. In this state, 〈ψ|x2|ψ〉 = 1

2 − s, so the spread in x is reduced.
With two modes a and b the vacuum

Ψ00 = 1√
π

exp

(
−q2

a + q2
b

2

)
= 1√

π
exp

(
− (qa + qb)2

4

)
exp

(
− (qa − qb)2

4

)

can be squeezed to become

Ψ00sq = 1√
π

exp

(
− (qa + qb)2

4R2

)
exp

(
− R2(qa − qb)2

4

)
,

where R is called the squeezing parameter. One way to do that is by using Paramet-
ric Down Conversion. This is a nonlinear optical phenomenon occurring in crystals
like beta Barium Borate under intense laser light. A fraction f � 1 of the photons
split into pairs of photons having half frequency, and thus half of the energy and
momentum each. The two photons may have the same polarization (Type I corre-
lation) or perpendicular polarizations (Type II). Let us consider the latter case. The
half frequency mode oscillators are no longer in the vacuum state but in a state

|S〉 = |00〉 + f |11〉.

Let a and b denote the two polarizations and qa and qb denote the dimensionless
coordinates of the oscillators qa = a+a†√

2
, qb = b+b†√

2
. The variance of qa −qb is given

by 〈S|(qa − qb)2|S〉. Expanding, one finds that the only terms that contribute are
those in aa† + a†a + bb† + b†b − 2ab − 2a†b† and the variance turns out to be
1 − 2 f + O( f 2).

Similarly, the variance of pa − pb is given by 〈S|(pa − pb)2|S〉 = 1 + 2 f +
O( f 2), as one can verify by setting pa = −i(a−a†)√

2
, pb = −i(b−b†)√

2
and working out

the calculation in the same way. This calculation implies an increased correlation
between the coordinates and a decreased correlation between the momenta. This
implies that the wave function of the two mode vacuum state has become a squeezed
vacuum.

Squeezed coherent states have also been obtained, e.g., by nonlinear optics tech-
niques. Squeezed states have important applications in precision measurements
(clocks, interferometers) and in gravitational wave detectors.



Chapter 17
Stationary States of One Particle
in 3 Dimensions

The partial differential equations are quite a bit harder to solve
than the ordinary ones, unless the symmetry allows us to
separate the variables. Fortunately, among the most interesting
stationary problems, there are some that can be solved
analytically.

17.1 Separation of Variables in Cartesian Coordinates

The 3-dimensional plane wave is the product of one-dimensional plane waves and
the kinetic energy is the sum of the contributions of motions along x, y, z. More
generally, the problem is separable into Cartesian coordinates if the potential energy
is of the form

V (x, y, z) = Ux (x) +Uy(y) +Uz(z), (17.1)

where Ux (x),Uy(y) e Uz(z) are arbitrary functions. In this case, the motions along
the three directions are independent. In the Schrödinger stationary state equation

[
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

]
Ψ (x, y, z) + V (x, y, z)Ψ (x, y, z) = EΨ (x, y, z),

one puts the factored solution

Ψ (x, y, z) = X (x)Y (y)Z(z); (17.2)

dividing by Ψ (x, y, z),
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1

X (x)

δ2X

δx2
+Ux (x) + 1

Y (y)

δ2Y

δy2
+Uz(z) + 1

Z(z)

δ2Z

δz2
+Uz(z) = E .

Therefore,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

X (x)

δ2X

δx2
+Ux (x) = εx ⇒ δ2X

δx2
+Ux (x)X (x) = εx X (x),

1

Y (y)

δ2Y

δy2
+Uy(y) = εy ⇒ δ2Y

δy2
+Uy(y)Y (y) = εyY (y),

1

Z(z)

δ2Z

δz2
+Uz(z) = εz ⇒ δ2Z

δz2
+Uz(z)Z(z) = εz Z(z),

εx + εy + εz = E,

and the problem is broken. In this way, one gets special solutions, but since they
form a complete set (Second Postulate) the most general solution can be expanded
as a convergent series of those special solutions.

Box

Consider a particle confined in a potential

V (x, y, z) =
{
0,− Lx

2 < x < Lx
2 ,− Ly

2 < y <
Ly

2 ,− Lz

2 < z <
Lz

2 ,

∞ otherwise.

V is of the form (17.1). Separating the variables, one finds the eigenfunctions

ψnxnynz (x, y, z) = unx (x)uny (y)unz (z)

and the energy eigenvalues

Enxnynz (x, y, z) = εnx + εny + εnz ,

with

unx =
√

2
Lx

sin
[

πnx
Lx

(
x + Lx

2

)]
,

εnx = �
2 π2n2x
2mL2

x
,

etc. The motions along x, y and z are independent; while classically one multiplies
the probabilities, here the amplitudes are multiplied. It ia statistical independence.

In the cubic case Lx = Ly = Lz = L , many levels are degenerate, that is,
several choices of the qquantum numbers give the same energy. For instance, E511 =
E151 = E115 = E333 = 27�2 π2

2mL2 . This is a very important and general remark.
More symmetry generally implies more degeneracy, when there are several non-
commuting symmetry operations that commute with the Hamiltonian. This idea is
fully developed by Group Theory.
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Oscillator in 3d

Similarly, one solves the problem

H = p2

2m
+ 1

2
m
[
ω2
x x

2 + ω2
y y

2 + ω2
z z

2
]
,

still with Enxnynz (x, y, z) = εnx + εny + εnz and high degeneracy in the isotropic case
ωx = ωy = ωz = ω.

Landau Levels

The Hamiltonian of a charged particle, subject to the Lorentz force, is

Ĥ = (
−→p − e

c

−→
A )2

2m
. (17.3)

We put the field along the z axis; we use the Landau gauge1

−→
A = (−y, 0, 0)B.

So,

Ĥ = (px + eBy
c )2 + p2y + p2z
2m

.

Here, px and pz are conserved, and we can take the wave function in the form

ψ = ei[px x+pz z]χ(y);

along z, the particle is free. Take, for simplicity, pz = 0 since the free motion is
uninteresting, and px = 0 ince this simply involves a shift in the origin of y; the
motion along y is quantized2 and harmonic with frequency ωL = eB

mc . The quantized
levels are called Landau levels.

17.2 Separation of Variables in Spherical Coordinates

When the potential energy depends only on the distance from a point, which is
conveniently taken as the origin (central problems) the S.E. is separable in spherical
coordinates; the transformations from Cartesian to spherical coordinates and back
are:

1Lev Davidovic Landau (Baku 1908- Moscow 1968), was the most important Soviet physicist. He
won the Nobel prize in 1962 for his works on superfluid He.
2The special role of the y direction is due to the gauge; by a gauge transformation we can rotate the
pair x, y as we like.
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⎧⎨
⎩
x = rsinθ cosφ,

y = rsinθ sin φ,

z = r cos θ,

⎧⎪⎨
⎪⎩
r = √

x2 + y2 + z2,
θ = arccos( z√

x2+y2+z2
),

φ = arctan( y
x ).

(17.4)

By using the chain rule and elementary, lengthy algebra (which is best done by
computer) one finds the momentum components

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i px = sin(θ) cos(φ)
∂

∂r
+ cos(φ) cos(θ)

r

∂

∂θ
− sin(φ)

r sin(θ)

∂

∂φ

i py = sin(θ) sin(φ)
∂

∂r
+ sin(φ) cos(θ)

r

∂

∂θ
+ cos(φ)

r sin(θ)

∂

∂φ

i pz = cos(θ)
∂

∂r
− sin(θ)

r

∂

∂θ
.

(17.5)

We know already that Lz = xpy − ypx = −i ∂
∂φ

. Moreover, we find

L± ≡ Lx ± i L y = e±iφ

[
∂

∂θ
± i cot(θ)

∂

∂φ

]

and

−L2 = 1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
+ 1

sin(θ)2
∂2

∂φ2
.

Finally, the Laplacian in spherical coordinates is:

∇2 = 1

r2
∂

∂r

(
r2

∂

∂r

)
+ 1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+ 1

r2 sin2(θ)

∂2

∂φ2
. (17.6)

If V = V (r), the stationary state equation

[
− �

2

2m
∇2 + V (r)

]
Ψ (r, θ,φ) = EΨ (r, θ,φ)

splits in a radial equation and an angular one by putting

Ψ (r, θ,φ) = R(r)Ylm(θ,φ).

Let |θ,φ〉 denote the amplitude that the system has a sharp orientation in space
in the direction with well-defined angles θ,φ. This may be the angular factor of a
wave function of a particle which separates in spherical coordinates. The Spherical
Harmonics

Ylm(θ,φ) = 〈θφ|l,m〉

satisfy the angular equation
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1

sin(θ)

∂

∂θ

(
sin(θ)

∂Y

∂θ

)
+ 1

sin2(θ)

∂2Y

∂φ2
= −λY, (17.7)

while the radial function is obtained by solving

d

dR

(
r2

dR

dr

)
− 2mr2

�2
[V (r) − E] R = λR. (17.8)

17.2.1 Spherical Harmonics

The angular equation (17.7) separates if we put

Ylm(θ,φ) = Θlm(θ)Φm(φ), (17.9)

where
d2Φm

dφ2
= −m2Φm ⇒ Φm = eimφ, integer m. (17.10)

We have already encountered the eigenfunctions of Lz . The Θ equation, known as
the Legendre equation, reads as:

sin(θ)
d

dθ

(
sin(θ)

dΘlm

dθ

)
+ {λ sin2(θ) − m2}Θlm = 0. (17.11)

where we know from Sect. 13.1 that λ = l(l + 1). For l = m = 0, this is simply
∂
∂θ

(sin(θ) ∂
∂θ

)Θ(θ) = 0 and is solved by Θ = 1. For l = 1,λ = 2, one readily
finds that for m = 0, Θ = cos(θ), and for m = ±1, Θ = sin(θ). In general,
it is elementary to find that the solution is a polynomial in cos(θ) for m = 0,
otherwise it is a polynomial in cos(θ) and sin /θ). Indeed, the general solution is
Θ(θ) = Pm

l (cos(θ)), where

Pm
l (x) = (−1)m(1 − x2)

m
2
dm

dxm
Pl(x) (17.12)

is an associated Legendre polynomial. The Legendre polynomials Pl(x) satisfy

d

dx
[(1 − x2)

d

dx
Pm(x)] + m(m + 1)Pm(x) = 0. (17.13)

In particular, P0(x) = 1, P1(x) = x, P2(x) = 3x2−1
2 , P3(x) = 5x3−3x

2 . They can be
computed from the Rodriguez formula

Pn(x) = 1

2nn!
dn

dxn
(x2 − 1)n.

http://dx.doi.org/10.1007/978-3-319-71330-4_13
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Then, Ylm(θ,φ) = 〈θ,φ|l,m〉 is the amplitude in the direction defined by θ and φ
of an eigenfunction of L2 with eigenvalue �

2l(l + 1) and of Lz with eigenvalue m�.
The spherical harmonics are tabulated in terms of associated Legendre functions,

which are also easily available.

l m Ylm Ylmrl

0 0 1√
4π

1√
4π

1 0
√

3
4π cos θ

√
3
4π cos θz

1 ±1 ±
√

3
8π sin θe±iφ ±

√
3
8π (x ± iy)

2 0
√

5
16π (3 cos2 θ − 1)

√
5

16π (3z2 − r2)

2 ±1 ±
√

15
8π cos θ sin θe±iφ ±

√
15
8π z(x ± iy)

2 ±2
√

15
32π sin2 θe±2iφ

√
15
32π (x ± iy)2

The closure relation is3

∞∑
k=0

k∑
m=−k

Y ∗
km(θ1,φ1)Ykm(θ2,φ2) = δ(Ω1 − Ω2)

= δ(θ1 − θ2)δ(φ1 − φ2)

| sin(θ1)| .

This means that any good f (θ,φ) can be developed:

f (θ,φ) =
∞∑
k=0

k∑
m=−k

∫
Y ∗
km(θ1,φ1) f (θ1,φ1)dΩ1Ykm(θ,φ). (17.14)

Parity is the operation P : (x, y, z) → (−x,−y,−z). In order to change the sign of
z = r cos(θ), one can do θ → π − θ, which implies sin(θ) → sin(θ); to change the
sign of x and y, one can do φ → φ + π. So,

P : φ → φ + π, θ → π − θ.

Under the action of P , Yll = eliφ(sinl(θ)) takes a factor eilπ = (−1)l . This result
cannot depend on m, since L±, like the components of the pseudovector angular
momentum, are even under parity.

3Recall that

δ(g(x)) =
∑

α δ (x − xα)∣∣∣ dgdx
∣∣∣ .

.
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17.3 Central Field

In a central potential V (r), we use spherical coordinates and seek special solutions
of the form

ψ(r, θ,φ) = R(r)Ylm(θ,φ);

then,

−∇2ψ =
[

−1
r2

∂
∂r

(
r2 ∂

∂r

)+ L2

�2r2

]
ψ

=
[

−1
r2

∂
∂r

(
r2 ∂

∂r

)+ l(l+1)
r2

]
ψ.

Removing the spherical harmonic, we are left with the radial equation

−1

r2
∂

∂r

(
r2

∂R

∂r

)
+ l(l + 1)

r2
R + 2mV (r)

�2
R = k2R(r), (17.15)

where

k2 = 2mE

�2
.

We gain some simplification by setting

R = u

r
;

then,
�
2

2m

[−1

r

d2u

dr2
+ l(l + 1)

r2
u

r

]
+ V (r)

u

r
= E

u

r
,

that is,

− �
2

2m

d2u

dr2
+ �

2

2m

l(l + 1)

r2
u(r) + V (r)u(r)︸ ︷︷ ︸ = Eu(r).

This is a 1d problem with a modified potential. The term l(l + 1) is a centrifugal
potential and forces the wave function to vanish at the centre unless l = 0. It is
convenient to write

−d2u

dr2
+ l(l + 1)

r2
u(r) + 2m

�2
V (r)u(r) = k2u(r).

Free Particle Again!

For V = 0 we get
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d2u

dr2
= l(l + 1)

r2
u(r) − k2u(r).

Equation (17.15) with ρ = kr is the spherical Bessel equation

2ρR′ + ρ2R′′ + (ρ2 − l(l + 1))R = 0,

and the solutions are

jl(ρ) = ρl
(

−1

ρ

d

dρ

)l sin(ρ)

ρ
.

The free particle eigenstates of H with diagonal L2 and Lz are quite different from
the De Broglie eigenstates of H and momentum. For l = 0,

ul=0(r) = sin(kr) =⇒ Rl=0(r) = sin(kr)

r
.

The alternative solution ul=0(r) = cos(kr) must be discarded, because Rl=0(r)
would blow up at the origin. We can expand the plane wave in spherical solutions.

This is simplest for eikz , since we need only harmonics with m = 0, Yl0(θ,φ) =√
2l+1
4π Pl(cos(θ)), with Pl Legendre polynomials. One can show that

eikz =
∞∑
l=0

(−i)l(2l + 1)Pl(cos(θ))(
r

k
)l(

1

r

d

dr
)l

sin(kr)

r
.

Spherical Potential Well

By imposing boundary conditions for r = R0, one finds the energy eigenvalues for
a particle in a spherical potential well

V (r) =
{
V = 0 r < a,

V = ∞ r > a.

In the case l = 0, one finds that

En0 = �
2π2

2ma2
n2, n = 1, 2, 3, . . .

For general l the eigenvalues Enl are

Enl = �
2x2nl

2ma2
,

where xnl is the n-th root of jl(x) = 0 and jl is the spherical Bessel function.
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17.4 The Hydrogenoid Atom

We now solve the Schrödinger equation for the bound states of the H atom and
one-electron atoms with the nuclear charge Ze. It is fair to mention, however, that
these results were first obtained by Pauli4 in a masterpiece of a paper before the
formulation of the Schrödinger equation, by using the conservation of the quantum
Runge–Lenz vector

R = p ∧ L − L ∧ p
2m

− k
r
r
, (17.16)

where k is the coefficient of 1
r in the Hamiltonian. It differs from the classical expres-

sion (17.16) in order to preserve the property that it commutes with the Hamiltonian.
For V (r) = − Ze2

r , the radial equation reads as

−d2u

dr2
+ l(l + 1)

r2
u − 2m

�2

Ze2

r
u = 2mE

�2
u.

The classical Kepler problem has no length scale, and the orbit can have any size. In
QuantumMechanics, it is the existence of � that determines the atomic radius. Since
d2u
dr2 is an inverse square length, the characteristic size is

a0 = �
2

me2Z
= aB

Z
,

where aB is the so-called Bohr radius; we must solve

−d2u

dr2
+ l(l + 1)

r2
u − 2

a0r
u = 2mE

�2
u.

It turns out that aB = 0.529 Angström, where 1 Angström =10−8 cm. It is con-
venient to put the equation in a dimensionless form by setting

ρ = r

a0
, ε = 2ma20E

�2
< 0 (17.17)

and multiplying by a20 . The dimensionless form is

u′′ + εu(ρ) = [−2

ρ
+ l(l + 1)

ρ2
]u(ρ). (17.18)

4W. Pauli, Z. Phys. 36, 336 (1926).
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Special Case

The case5 l = 0 is simplest and for ρ → ∞, by approximating by u′′ + εu(ρ) ∼ 0,
one finds the trend u → e−ρ

√−ε: this prompts the trial solution

u = ρe−λρ, λ = √−ε.

It turns out that

u′ = (1 − λρ)e−λρ,

u′′ = (−2λ + λ2ρ)e−λρ = (−2λ
ρ

+ λ2)ρe−λρ.

So, ε = −1. These results concern the ground state, as we shall see, and lead to

R(r) ∝ e− r
a0 = e− Zr

aB , E = − �
2

2ma20
= −1

2

me4Z2

�2
.

Note the strong Z - dependence. Moreover, E = − Ze2

2a0
.

Normalization

Since 2√
a30
e− r

a0 is normalized with

∫ ∞

0
drr2|R1,0|2 = 1

and Y00 = 1√
4π
,

ψ = 1√
πa30

e− r
a .

Excited Bound States

From (17.18), we see that even if l > 0, the asymptotic trend for ρ → ∞, remains
u → e−ρ

√−ε; the short distance behavior changes at short distances from the centre
because of the centrifugal barrier, and becomes

u′′ ∼ l(l + 1)

ρ2
u(ρ), ρ → 0.

Therefore, u → ρl+1. Then, we set
λ = √−ε, with

u = e−λρρl+1
[
c0 + c1ρ + . . . + cnr ρ

nr
]

= e−λρ
[
c0ρl+1 + c1ρl+2 + . . . + cnr ρ

l+1+nr
]
,

5The states with l = 0, 1, 2, 3, . . ., are called s, p, d, f, g, h, i, etc.,and so on, in alphabetic order.
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that is,

u(ρ) = e−λρ
nr∑

ν=0

cνρ
ν+l+1. (17.19)

Therefore, the solution is of the form

u = e−λρρl+1 f (nr ,l)(ρ), (17.20)

where nr is the radial quantum number. We shall find that nr → ∞ cannot be
accepted, and f (nr ,l)(ρ) is a polynomial.

Then, differentiating (17.19),

u′ = e−λρ
nr∑

ν=0

cν[−λρν+l+1 + (ν + l + 1)ρν+l ].

Differentiating again,

u′′ = e−λρ
∑nr

ν=0 cν{−λ[−λρν+l+1 + (ν + l + 1)ρν+l ]
−λ(ν + l + 1)ρν+l + (ν + l + 1)(ν + l)ρν+l−1}.

Let us simplify:

u′′ = e−λρ
nr∑

ν=0

cν{λ2ρν+l+1 − 2λ(ν + l + 1)ρν+l + (ν + l)(ν + l + 1)ρν+l−1}.

The first term is λ2∑ cνρ
ν+l+1e−λρ = −εu. Therefore,

u′′ + εu = e−λρ

{
−2λ

nr∑
ν=0

cν(ν + l + 1)ρν+l +
nr∑

ν=0

cν(ν + l)(ν + l + 1)ρν+l−1

}
;

we shift the second sumby renaming ν → ν+1 :∑b
ν=a f (ν) = ∑b

ν+1=a f (ν+1) =∑b−1
ν=a−1 f (ν+1). To avoid complications with the first and last terms, we put cν = 0

for ν < 0 and for ν > nr . So,

u′′ +εu = e−λρ
{−2λ

∑nr
ν=0 cν(ν + l + 1)ρν+l

+ ∑nr−1
ν=−1 cν+1(ν + l + 1)(ν + l + 2)ρν+l

}
.

Collecting equal powers ρ with
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u′′ + εu = e−λρ

{
nr∑

ν=−1

ρν+l [−2λcν(ν + l + 1)

+ cν+1(ν + l + 1)(ν + l + 2)
]}

. (17.21)

But (17.18) implies thatu′′+εu = [− 2
ρ
+ l(l+1)

ρ2
]u(ρ); inserting (17.19) and expanding,

the rhs reads as:

−2

ρ
u + l(l + 1)

ρ2
u = e−λρ

[
−2

nr∑
ν=0

cνρ
ν+l + l(l + 1)

nr∑
ν=0

cνρ
ν+l−1

]
.

Now, shifting the sum again (with c−1 = 0), one finds

e−λρ
[
−2

∑nr
ν=0 cνρ

ν+l + l(l + 1)
∑nr−1

ν=−1 cν+1ρ
ν+l
]

= e−λρ
∑nr

ν=−1 ρν+l
[−2cν + l(l + 1)cν+1

]
.

Equating with (17.21),

−2λcν(ν + l + 1) + cν+1(ν + l + 1)(ν + l + 2) = −2cν + l(l + 1)cν+1,

and, collecting terms,

cν+1[(ν + l + 1)(ν + l + 2) − l(l + 1)] + 2cν[1 − λ(ν + l + 1)] = 0.

We need to simplify the coefficient of cν+1. Set a = ν + 1; we are left with

(ν + l + 1)(ν + l + 2) − l(l + 1) = (a + l)(a + l + 1) − l(l + 1)

= a2 + a(l + 1) + al + l(l + 1) − l(l + 1) = a(a + 2l + 1) = (ν + 1)(ν + 2 + 2l).

Now solve for cν+1:

cν+1 = 2
λ(ν + l + 1) − 1

(ν + 1)(ν + 2l + 2)
cν . (17.22)

This recurrence relation like (16.10), for ν → ∞, gives an exponential series
f (nr ,l)(ρ) ∼ e2λρ. The seriesmust terminate, otherwise the exponential growthwould
take us outside the space of square integrable functions. So, we must find cnr+1 = 0
for ν = nr , where the radial quantum number nr is the degree of the polynomial.
The condition is

λn = 1, (17.23)

where
n = nr + l + 1 (17.24)

http://dx.doi.org/10.1007/978-3-319-71330-4_16
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defines the so-called principal quantum number n. The hydrogenic wave function is
labelled by n and by the angular quantum numbers:

ψn,l,m(r, θ,φ) = Rn,l(r)Yl,m(θ,φ).

The energy eigenvalues are ε = − 1
n2 , or, in view of (17.17),

En = − Z2e2

2aBn2
= −13.59Z2

n2
eV . (17.25)

The energies depend exclusively on n; therefore, 2s and 2p are degenerate, 3s, 3p,
3d are degenerate, and so on. The low entries of the energy level scheme are: 1s, 2s,
2p, 3s, 3p, 3d, . . . as follows.

shell n level angular momentum l allowed m
K 1 1s 0 m = 0

L 2
2s
2p

0
1

m = 0
m = −1, 0, 1

M 3

⎧⎨
⎩

3s
3p
3d

0
1
2

m = 0
m = −1, 0, 1

m = −2,−1, 0, 1, 2

N 4

4s
4p
4d
4 f

0
1
2
3

m = 0
m = −1, 0, 1

m = −2,−1, 0, 1, 2
m = −3,−2,−1, 0, 1, 2, 3

· · · · · · · · · · · · · · ·

These levels agree with experiment, apart from corrections that are small for
Hydrogen. Relativistic corrections (spin-orbit interaction, dependence of mass from
velocity, etc.) have a relative size Zα2, where Z is the atomic number and α is
the fine structure constant. Other corrections arise from the electron spin magnetic
moment, nuclear spin and quadrupole moment, and Quantum Electrodynamics. .
Spectroscopically, the photon frequencies that are emitted and absorbed are

νmn = R

(
1

n2
− 1

m2

)
,

where R is the Rydberg constant. Emission occurs in the decay m → n, while the
opposite transition leads to absorption. The series of lines with n = 2 was discovered
by Balmer in 1885, and starts in the visible spectrum, with the line Hα with ν23 in
the red, the blue line Hβ with ν24, and the violet Hγ with ν25; the series continues
in the ultraviolet. Later, the ultraviolet Lyman series n = 1; then the infrared series
with m = 3, 4, 5; however the explanation remained a mystery before the advent of
Quantum Mechanics.6 The explanation is:

6An ad hoc model by N. Bohr in 1913 gave the same levels but nothing else.
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�ωmn = Em − En = 13, 59eV

(
1

n2
− 1

m2

)
.

Eliminatingλ in (17.22) by the conditionλn = 1, one finds the recurrence relation
with the coefficients of f (nr ,l):

cν+1 = 2

n

ν + l + 1 − n

(ν + 1)(ν + 2l + 2)
cν . (17.26)

This may be simplified by removing the factor 2
n . To this end, we change scale. If

a function L(x) = ∑
aνxν is defined by a recurrence relation aν+1

aν
= ξ(ν), we can

change scale by setting L(x) → L(sx), where s is arbitrary. Then,

L(sx) =
∑

a′
νx

ν, a′
ν = aνs

ν =⇒ a′
ν+1

a′
ν

= s ξ(ν).

Therefore, we set f (nr ,l)(ρ) = L(
2ρ
n ), and L2l+1

nr has a simplified recurrence relation

aν+1 = ν + l + 1 − n

(ν + 1)(ν + 2l + 2)
aν . (17.27)

This defines7 the associated Laguerre polynomials. Now, from (11.12) one obtains

u(ρ) = e−λρρl+1L2l+1
nr (

2ρ
n ); λ = 1/n,

Rnl(ρ) = e− ρ
n ρl L2l+1

nr (
2ρ
n ).

(17.28)

Radial Functions

We can derive the radial functions from (17.27) by recalling that ν ≤ nr and that
n = nr + l + 1. For n = 1, nr = l = 0 e ν = 0. Putting a0 = 1 one gets a1 = 0.

For n = 2, there are two cases: nr = 1, l = 0, nr = 0, l = 1.
For nr = 1, l = 0, (17.27) becomes aν+1 = ν−1

(ν+1)(ν+2)aν . For ν = 0, a1 = −a0/2;
for ν = 1 a2 = 0. Therefore,

L1
1(ρ) = 1 − 1

2
ρ,

7The associated Laguerre polynomials

L p
q−p(x) = (−1)p

(
d

dx

)p

Lq (x)

are defined in terms of the Laguerre polynomials

Lq (x) = ex
(

d

dx

)q (
e−x xq

)
.

.

http://dx.doi.org/10.1007/978-3-319-71330-4_11
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and, up to a normalization constant,

R20(ρ) = e− ρ
2 (1 − 1

2
ρ).

For nr = 0, l = 1, there is only ν = 0; Equation (17.27) aν+1 = ν
(ν+1)(ν+4)aν,

yields a1 = 0, l = 1 and so
R21(ρ) = e− ρ

2 ρ.

Here, I report few radial functions normalized with:

∫ ∞

0
|Rn,l(r)|2r2dr = 1.

R1,0 = 2√
a30
e−ρ

R2,0 = 1√
2a30

(1 − ρ
2 )e− ρ

2

R2,1 = 1√
24a30

ρe− ρ
2

R3,0 = 2√
27a30

(1 − 2ρ
3 + 2ρ2

27 )e− ρ
3

R3,1 = 8

27
√
6a30

(1 − ρ
6 )ρe− ρ

3

R3,2 = 4

81
√
30a30

ρ2e− ρ
3 .

In general, Rnl(r) has n − 1 nodes.

17.4.1 Coulomb Wave Functions

The continuum (positive energy) solutions called Coulomb waves are of interest in
electron-nucleus scattering, and also in the description of the final state of photo-
electrons (i.e., electrons ejected by an atom that absorbs a photon) and Auger elec-
trons, i.e. electrons emitted by an atomwhile another electron jumps to a lower empty
level. There is no special interest here to go into the solution of the radial equation
in terms of confluent hypergeometric functions. However the interesting thing is that
for large ρ, the wave function does not approach a free electron function, but gets
a phase that depends on distance at all distances. The reason is that the Coulomb
potential is long range.
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17.4.2 Atomic Shells

The states with n = 1, 2, 3, 4, . . . form the so-called atomic shells K , L , M,

N , O, P . . . which are observed grosso modo in all atoms. Actually, the descrip-
tion of many-electron atoms is much more involved, but to some extent one can
understand the observed charge densities and binding energies in terms of atomic
electrons moving in an effective field, due to the field of the nucleus plus the mean
field of the others. This is the idea behind the Hartree-Fok method, see Chap. 21.
Since nr ≥ 0, l ∈ (0, n − 1). Shell K has one orbital, shell L has 4, shell M 9. How
many in shell n? Since

∑p
n=1 = p(p+1)

2 , the number of orbitals is
∑n−1

l=0 (2l+1) = n2.

http://dx.doi.org/10.1007/978-3-319-71330-4_21


Chapter 18
Spin and Magnetic Field

An electron has radius 0 (as far as we know), a quantized
angular momentum (spin) 1

2� and a magnetic moment. Let us
discover how.

18.1 Magnetic and Angular Moment in Classical Physics

Classically, a point charge that circulates on a ring of radius r produces a current
i = ev

2πr , which causes a magnetic dipole moment −→μ = i
c S

−→n , S = πr2, in obvious
notation;

−→μ = ev

2c
r−→n = e

2c
−→r ∧ −→v = e

2mc

−→
L . (18.1)

The so-called gyromagnetic factor e
2mc changes an angular momentum to a magnetic

moment. The two are always parallel, in all theories. The magnetic dipole produces
a magnetic field. We can take for the vector potential the expression

−→
A =

−→μ ∧ −→r
r3

.

In an external magnetic field
−→
B , the dipole has energy

E = −−→μ · −→
B . (18.2)

When a particle has a dipole moment, the angle θ between the magnetic moment and
B is a constant of the motion (since it takes energy to modify θ).

According to Eq. (18.2), a dipole in a space-dependent field feels a force

−→
F = −−→∇ E = −→∇ [−→μ · −→

B ]. (18.3)
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Measurement of Microscopic Magnetic Moments

Suppose we have a beam of unknown magnetic moments μ, with no charge, and
known mass m. One can measure μ by letting the beam cross an inhomogeneous
field in a short time Δt and measuring the deflection. (The electric charge would be
deflected by the Lorentz force, which is much larger than the force on the dipole,
and this is the reason for excluding it).

If l is the width of the inhomogeneous field regionwhere ∂B
∂z �= 0 and themagnetic

moment has a known velocity v, it spends a time Δt = l
v
in the field. Then,

mΔv ≈ FΔt, quindiΔv ≈ μz
∂Bz

∂z

l

mv
,

and the deflection must be

Δθ ≈ Δv

v
≈ μz

∂Bz

∂z

l

mv2
. (18.4)

18.2 Stern–Gerlach Experiment

In 1922, Stern e Gerlach conducted one of the most important and astonishing exper-
iments in history. They produced an atomic beam of Ag and sent it through an inho-
mogeneous magnetic field. Their question was: do the electronic currents in the atom
produce a magnetic moment? Ag had been chosen because it was monovalent, so
it was possible that the only chemically active electron circulating in a larger orbit
played a role in the experiment.1 The beam was obtained frommetal vapor produced
in a crucible; the whole apparatus operated in vacuo and Ag was known to remain
atomic. The beam was collimated and in the absence of a field, formed a spot on
a photographic plate. In Fig. 18.1, a schematic drawing of the geometry is shown.
The shape of the magnet was optimized in order to produce an inhomogeneous field,
such that the trajectory depended on the orientation of the atomic dipole.

The plan of the experiment was to achieve a measurement of the dipole μ: it was
expected that the beam should broaden into a cone, due to the random orientation
of the dipoles in the crucible and in the beam; from the angle θ at the vertex of the
cone one could deduce μ according to Eq. (18.4). Stern and Gerlach had planned
their experiment very well, from the classical point of view, and the atoms did show
a moment of the expected order of magnitude. But the beam does not broaden; it
splits into two, equally intense branches, one with the moment parallel to the field
and the other with opposite moment.

Each branch consists of atoms with the same moment orientation, and the same
μz . If one of these beams is sent to a second apparatus oriented like the previous one,

1The Bohr model predicted orbits, and classically there is no other way than a current to produce a
magnetic moment; but Nature had a surprise in store.
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Fig. 18.1 Schematic sketch of the Stern–Gerlach apparatus. Left: seen from the crucible, along the
y axis; the magnetic field is strongly inhomogeneous due to the pointed shape of the North pole.
Right: seen from the direction of the x axis

it can be deflected, but does not split again. This is expected, since all the atoms are
in the same state, see the same field, and there is no reason for a splitting. But, if
the second apparatus is oriented differently, a new splitting occurs. Why? This fact
cannot be understood in terms of classical magnetic moments. There is, however, an
optical analogue (see the next subsection).

It was understood that the magnetic moment of Ag is due to the electronic spin,2

the one of the chemically active optical electron. Summarizing the results of the
experiment:

1. The Ag atom has a magnetic moment μ and the values of μz along any direction
are quantized.

2. Since −→μ ∝ −→
L , the values of Lz are quantized, too.

3. There are 2l + 1 possible values of m; the experiment with Ag shows that the
values are 2, so the angular momentum is 1

2 .
4. The magnetic moment is found either up or down in any direction one measures

it.
5. The outcome of the experiment cannot be understood in terms of classical

point masses carrying a magnetic moment. Indeed, the direction of the magnetic
moments is not a property of the Ag atoms, but is determined by the field.

This shows essential features of Quantum Mechanics. The interpretation is:

1. Every angular momentum due to some rotation in space (orbital angular momen-
tum) is associated with

−→
L and has integer eigenvalues; besides, there is spin,

which has no classical counterpart. In general, we shall denote angular momenta
of any origin by

−→
j and the component by m j .

2. The Ag atoms do not have a sharply defined component μz of the magnetic
moment when they form the beam, but only when one measures μz .

2Most nuclei have spins and magnetic moments; the nuclear magnetic moments, however, are
negligible compared to the electronic ones. This is related to the proton and neutron masses, which
are much heavier than the electron.
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Fig. 18.2 A second
Stern–Gerlach apparatus
splits the beam again if its
N-S direction is different

3. The act ofmeasurement produces a collapse of thewave function and twobranches
with well-defined μz ; μx and μy are not defined.

4. Anymeasurement along a different direction produces a new collapse of the wave
function (see Fig. 18.2).

18.2.1 Electromagnetic Spin

Nobody had imagined the electron spin before the discovery, but there is an analogy
with the polarization of electromagnetic waves which was known from Maxwell’s
equations. An electromagnetic wave carries momentum and therefore also orbital
angular momentum. The orbital angular momentum is

L = 1

4π

∫
d3r r ∧ [E ∧ B]

in Gaussian units. Besides the orbital angular momentum, the wave also carries spin
angular momentum if it is left or right circularly polarized, like for instance a wave
propagating long z with Ex = E0 cos(ωt), Ey = ±E0 sin(ωt). Even in this case no
object turns, and the angular momentum is intrinsic. Since the photon does not cou-
ple to magnetic fields, we must observe its spin through the angular momentum
that photons can exchange with matter. A left polarized photon carries an angular
momentum �. Beth3 reports a measurement of the spin using a special film that con-
verts a righ polarized wave to left polarized. The film was suspended to a quartz fiber
and exposed to left polarized radiation, and the angular momentum was mechan-
ically measured. Spin S = 1 implies three states with M = −1, 0, 1, but this rule
holds in the rest reference of the particle. The photon has no rest reference and
only M = −1, 1. One can perform an optical experiment which bears some analogy
the Stern–Gerach experiment using a Wollaston prism, invented by William Hyde

3R.A. Beth Phys. Rev. 5, 115 (1936).
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Wollaston, that separates an unpolarized beam in two orthogonal linearly polarized
outgoing beams. This is based on the property of birefringence of some anisotropic
crystals like calcite whose refraction index depends on the polarization and on the
direction of propagation. The analogy would be perfect if the experiment separated
left and right polarization.

18.3 Angular Momentum Matrices

If one knows that an electron is in −→x , the information is not complete. It has two
orthogonalways to be there. The twoways correspond to the two components of Sz =
±�

2 , where z is the direction privileged by the experiment. No motion of particles
can realize a fractional angular momentum. No spherical harmonic is relevant to it.
Actually spin is intrinsic angular momentum, intrinsic like mass or charge, with a z
component that can be exchanged with the outside world in fixed amounts, while z
is in a direction that can be chosen at will. There is actually a vague analogy with
rotating rigid bodies in classical mechanics.

For the orbital angular momentum
−→
L , and for integer spins, we know the repre-

sentations (13.11)–(13.13)

〈l1m1|L2|l2m2〉 = �
2l1(l1 + 1)δl1,l2δm1,m2 ,

〈l1m1|Lz|l2m2〉 = �m1δl1,l2δm1,m2 ,

〈l1m1|L±|l2m2〉 = �

√
l1(l1 + 1) − m2(m2 ± 1)δl1,l2δm1±1,m2 ,

with integer l, m. None of these is suitable for half-integer spin; we need the spinor
representations,4 which correspond to half integer angular momenta ( 12 ,

3
2 ,

5
2 · · · ).

We shall deal with spin 1
2 in detail. Compound systems like nuclei and atoms may

have semi-integer spins, which arises as a combination of the spins of the constituent
particles (electrons and quarks). For the electron spin degree of freedom, we need a
formalism without the derivatives ( ∂

∂r ,
∂
∂θ

, ∂
∂φ

). The direction of the magnetic field

is the quantization axis and will be taken as the z axis. For spin 1
2 , there are just

two orthogonal states |α〉 = |Sz = 1
2 〉 and |β〉 = |Sz = − 1

2 〉. These are called con-
ventionally up and down spin and will be taken as the basis of the spin Hilbert
space.5

The matrix representation of states and operators is achieved as in Sect. 13.1.2.
Letting Sz = �

2σz ,

4The following theory is due to Wolfgang Pauli (1900 Vienna - 1958 Zurich) one of the most
important theoreticians of the twentieth century.
5In general the system has many other degrees of freedom and the full Hilbert space is the tensor
product of the spin Hilbert space times the Hilbert space arising from the other degrees of freedom.
See Sect. 12.6.

http://dx.doi.org/10.1007/978-3-319-71330-4_13
http://dx.doi.org/10.1007/978-3-319-71330-4_13
http://dx.doi.org/10.1007/978-3-319-71330-4_13
http://dx.doi.org/10.1007/978-3-319-71330-4_12
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|α〉 ≡ |1
2
〉 →

(
1
0

)
; |β〉 ≡ | − 1

2
〉 →

(
0
1

)
;σz =

(
1 0
0 −1

)
.

The two-component wave functions, called spinors, are written like complex column

vectors ψ =
(
a
b

)
; the Hermitean conjugate is

ψ† =
(
a
b

)†

= (
a∗ b∗ )

.

Introducing shift operators

S+ = �

(
0 1
0 0

)
, S− = �

(
0 0
1 0

)
, (18.5)

one can switch spin:

S+|α〉 = 0, S−|α〉 = �|β〉, S−|β〉 = 0, S+|β〉 = �|α〉.

By analogy with the orbital angular momentum, from the shift operators S±, one
gains the x and y components:

S+ = Sx + i Sy
S− = Sx − i Sy .

Here is the spin representation in terms of Pauli matrices:

−→
S = �

1

2
−→σ ,

with

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

It is easy to check that the Pauli matrices have square

(
1 0
0 1

)
and anticommute,

[
σi ,σ j

]
+ = 2δi j ,

where the indices run over the 3 components. The identification of
−→
S with angular

momentum is legitimate, since

−→
S ∧ −→

S = i�
−→
S ,
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which holds, since [
σx ,σy

]
− = 2iσz,

and so on. Moreover,

S2 = 3

4
�
2 = 1

2

(
1

2
+ 1

)
�
2.

An electron can go from α and β or back by adsorbing or creating a spin-1 photon
in magnetic resonance experiments. It is a magnetic dipole transition. If the electron
spin is localized over an atom, the wavelength of the photon is much larger; in such
cases, the orbital angular momentum of the photon is practically zero and the photon
spin changes by 1.

18.3.1 For the Electron Spin, Every Direction Is OK

The Stern–Gerlach experiment shows that the spin component is ± 1
2� in any direc-

tion, and the analogy with the spin of a tennis ball is misleading. The Pauli formalism
describes this state of affairs well.

The (Hermitean) matrix that represents the spin in the direction−→n = (sin θ cosφ,

sin θ sin φ, cos θ) is

−→
S · −→n = 1

2
�

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
.

The eigenvectors are

| ↑,
−→n 〉 =

(
cos θ

2

sin θ
2e

iφ

)
, (18.6)

| ↓,
−→n 〉 =

(− sin θ
2e

−iφ

cos θ
2

)
. (18.7)

For example, the physical meaning of the upper component cos θ
2 of | ↑,

−→n 〉 is
the following. Suppose a beam of particles is prepared in the state | ↑,

−→n 〉, by a
Stern–Gerlach experiment with the inhomogeneous field along the −→n axis. Then,
suppose the z component of the spin is measured, maybe using a new Stern–Gerlach
apparatus with the field along z. Then, cos θ

2 = 〈α| ↑,
−→n 〉 is the amplitude of up

spin.

Problem 30 Verify the eigenvectors.
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Solution 30

(
cos θ sin θe−iφ

sin θeiφ − cos θ

) (
cos θ

2

sin θ
2e

iφ

)
=

(
cos(θ) cos( θ

2 ) + sin(θ) sin( θ
2 )

sin(θ) cos( θ
2 )e

iφ − cos(θ) sin( θ
2 )e

iφ

)
.

Substituting the identities

cos(θ) = cos

(
θ

2

)2

− sin

(
θ

2

)2

, sin(θ) = 2 cos

(
θ

2

)
sin

(
θ

2

)

one finds

=
(
cos( θ

2 )
[
cos( θ

2 )
2 − sin( θ

2 )
2 + 2 sin( θ

2 )
2
]

sin θ
2e

iφ
[
2 cos( θ

2 )
2 − cos( θ

2 )
2 + sin( θ

2 )
2
]
)

=
(
cos( θ

2 )

sin( θ
2 )e

iφ

)
.

The True Origin of Electron Spin

There is no premonition of spin in the postulates. The Pauli theory looks like a
brilliant patch; in fact it is phenomenological. This is how one describes theories
that properly explain some phenomena, but also show the need for a broader and
more satisfactory framework. Actually in the Schrödinger theory one starts with the
classically known observables and Pauli has shown that the novel concept of spin fits
well in the theory. A much more satisfactory formulation arises from the relativistic
formulation. For the electron, this is Dirac’s theory.

18.3.2 How to Rotate a Spin 1/2

How to rotate a spinor like, for instance | ↑,
−→n 〉 =

(
cos θ

2

sin θ
2e

iφ

)
by an angle Δφ

around z axis? One could quite reasonably argue simply that φ → φ + Δφ; well,
this is almost true, but there is a subtle, striking complication. In Sect. 13.2, we
determined how to achieve the rotation of an orbital acting not on the argument x
of ψ(x) but on ψ. This requires a unitary operator Rφ = e−i Δφ·L

� . By analogy, the

generator of the infinitesimal rotations of spin is
−→
S = 1

2�
−→σ and the operator that

does the rotation is
Rφ = e−iΔφ· S

� . (18.8)

At the exponent, we find a 2 × 2 matrix, which is easy to diagonalize and exponen-
tiate. The operator (18.8) that rotates around the z axis reads as

RΔφ = e−i Δφ
2 σz = e

−i Δφ
2

⎛
⎝ 1 0
0 −1

⎞
⎠
.

http://dx.doi.org/10.1007/978-3-319-71330-4_13
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Diagonal matrices are exponentiated immediately:

(
μ 0
0 ν

)2

=
(

μ2 0
0 ν2

)
,

and so

e

⎛
⎝ μ 0
0 ν

⎞
⎠t

=
(
eμt 0
0 eνt

)
,

and also

RΔφ =
(
e−i Δφ

2 0
0 ei

Δφ
2

)
.

Therefore,

RΔφ| ↑,
−→n 〉 =

(
e−i Δφ

2 cos θ
2

ei
Δφ
2 sin θ

2e
iφ

)
= e−i Δφ

2

(
cos θ

2

sin θ
2e

i[φ+Δφ]

)
:

increments φ, but also gives an overall phase to the spinor. The implication is that
R2π = −1: a rotation by 2π changes the sign of the spinor! This fundamental property
of half-integer spin particles is rooted in the mathematics. The set of all the matrices
(18.8) with the rule of matrix multiplication constitutes a mathematical structure
called the SU(2) Group (S stands for special, and means that all the matrices have
a unit determinant). The O(3) Group made with the matrices (13.21) does almost
the same job. In both cases, all the rotations are represented, but in SU (2) there are
two operators for each rotation. SU (2) is called the covering Group of O(3). The
(−1) factor does not change the state, but if one could superpose two beams then
the (−1) factor affecting one of them would lead to destructive interference. Such an
experiment has not yet been reported.

18.3.3 Spin Magnetic Moment and Pauli Equation

The classical equation (18.1) associates amagneticmomentwith the angularmomen-
tum. Since within the electron, there are no currents, we cannot compute the electron
moment classically. In Dirac’s Relativistic Quantum Theory one finds that

−→μ = e

2mc
g
−→
S , (18.9)

where m is the electron mass and g = 2. Actually, for the electron this quantity has
been measured with great accuracy, with the result that g ≈ 2.0023193043617. The
small discrepancy is due to the fact that a real electron is the source of a field, not

http://dx.doi.org/10.1007/978-3-319-71330-4_13
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considered in Dirac’s theory, and as such, it interacts with virtual electron-positron
pairs. Quantum Electrodynamics is a field theory, taking into account the interaction,
and its result agrees extremely well with the data. For the proton, which is about 1800
times more massive and has internal structure and strong interactions, g ≈ 5, and μ
is much smaller. The neutron has μ comparable to that of the proton.

In amagnetic field B, the dipole energy is given by (18.2) like in Classical Physics.
The Schrödinger-Pauli equation reads as

i�
∂ψ

∂t
= Hψ. (18.10)

For a particle with charge e and spin 1/2 in a magnetic field,

H =
⎛
⎝ (

−→p − e
c

−→
A )2

2m 0

0
(
−→p − e

c

−→
A )2

2m

⎞
⎠ − e

2mc
g
−→
S · −→

B =
⎛
⎝ (

−→p − e
c

−→
A )2

2m − e�
2mc

g
2 B 0

0
(
−→p − e

c

−→
A )2

2m + e�
2mc

g
2 B

⎞
⎠ .

The magnetic term e
2mcg

−→
S · −→

B , alone has eigenstates |α〉 with eigenvalue μB B and
|β〉 with −μB B, where μB is the Bohr-Procopiu magneton; for e < 0 the solutions
are exchanged; so, for an electron in a magnetic field parallel to the z axis, |β〉 is the
ground state. Approximating g with 2,

μB = e�

2mc
.

The two levels are separated by the Larmor frequency,

ωL = eB

mc
.

Including the kinetic term only, one finds the Landau levels (Sect. 17.1); the spin
term replaces each level by two sub-levels; since g ∼ 2, the spin down adds eB

2mc
to the energy and the spin up subtracts the same. Thus the two magnetic levels are
separated by ∼ �ωL .

The direct transition between the spin sublevels can be done by absorbing or
emitting a photon, in a magnetic dipole transition; this is EPR (electron spin reso-
nance), or NMR (nuclear spin resonance). For a proton the ground state is α, and the
frequency is three orders of magnitude lower.

Problem 31 Rotate the spinor |α〉 around the x (a) by an angle ϕ = π/2 and (b) by
an angle ϕ = π. Interpret the results physically.

http://dx.doi.org/10.1007/978-3-319-71330-4_17
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Solution 31 The rotation operator by ϕ around x is

Rϕ = exp

[−iϕ

2

(
0 1
1 0

)]
.

Separating odd and even powers in the expansion of eix = cos(x) + i sin(x), one
finds

Rϕ =
∑
evenn

1

n!
(−iϕ

2

)n

+ σx

∑
oddn

1

n!
(−iϕ

2

)n

.

∑
npari

(i x)n

n! = Reeix = cos(x)
∑

ndispari

(i x)n

n! = i Imeix = i sin(x).

Therefore,

Rϕ =
(
cos

(ϕ
2

) −i sin
(ϕ
2

)
−i sin

(ϕ
2

)
cos

(ϕ
2

)
)

.

Note that R†
ϕ = R−1

ϕ . One finds: (a)

Rπ/2|α〉 = 1√
2

(
1
−i

)
.

This is an eigenstate (spin down) of Sy . (b)
Rπ|α〉 = −i |β〉. This is in line with one’s intuition.

Problem 32 Verify the identity

−→
j (1) · −→

j (2) = jz(1) jz(2) + j+(1) j−(2) + j−(1) j+(2)

2
,

where
−→
j (1),

−→
j (2) are angular momenta of different particles with [−→j (1),−→

j (2)]− = 0.

Solution 32 Just substitute the definitions.

18.4 Quantum ‘Sum’ of Angular Momenta

An electron in a central field has orbital angular momentum and spin. This holds
for each of the 92 electrons in a Uranium atom. We must also consider the spin of
the nucleus, which results from the spins of protons and neutrons and their orbital
angular momenta.

The total angular momentum of any isolated system is particularly interesting,
since it is always conserved. The isotropy of space implies that the Hamiltonian must
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commute with all rotations, and with their generators. The nuclear angular momen-
tumwould be conserved separately, if we could neglect the magnetic dipole coupling
with the electron angular momentum; the electron orbital momentum is coupled to
the electron spinmomentumby the relativistic spin-orbit interaction arising inDirac’s
theory. When relativistic effects are small, the second-order corrections in v/c are
enough. The spin-orbit interaction

H ′ = − e�

4m2c2
σ.(E ∧ p)

is prominent among the corrections arising from Dirac’s theory since it can lift
degeneracies. In central problems, the spin-orbit interaction is proportional to

−→
l · −→s

for each electron, and there are similar spin-spin, orbit-orbit and spin-other orbit
interactions. These terms arise in the Breit approximation that includes the lowest-
order relativistic corrections to the Coulomb interaction. The latter is strictly correct
only in the case of static charges, and since electrons in atoms do move, the Breit
approximation should replace the Coulomb interaction, at least for heavy elements.

Consider a system made up of two parts with angular momenta j1 and j2 that
depend on different variables and therefore commute:

[ j1, j2]− = 0;

the angular momentum operator of the system is the sum

j = j1 + j2,

as in Classical Physics. It is really an angular momentum, since trivially,

j ∧ j = i� j .

We need a basis of eigenstates for each:

j21 | j1m1〉 = j1( j1 + 1)�2| j1m1〉, j1z| j1m1〉 = m1�| j1m1〉
j22 | j2m2〉 = j2( j2 + 1)�2| j2m2〉, j2z| j2m2〉 = m2�| j2m2〉.

The direct product basis is a basis for the compound system:

| j1m1 j2m2〉 ≡ | j1m1〉| j2m2〉. (18.11)

For all the (2 j1 + 1)(2 j2 + 1) basis vectors, we already know the eigenvalue m j

of jz :
jz| j1m1 j2m2〉 = (m1 + m2)�| j1m1 j2m2〉 = m j�| j1m1 j2m2〉.
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Table 18.1 Spin states of H

Stati m j j

|α(1)α(2)〉 1 1

|α(1)β(2)〉, |β(1)α(2)〉 0 Mixed 1, 0

|β(1)β(2)〉 −1 1

We cannot (generally) assign j , m1 and m2. In fact,

j2 = j21 + j22 + 2 j1 · j2;

the squares do commute with the components, but j1 · j2 fails to comute:

[ j2, j1z]− = 2[ j1 · j2, j1z]− = 2[ j1x j2x + j1y j2y, j1z]− (18.12)

does not vanish.

Problem 33 Compute the commutator (18.12).

Solution 33 One finds 2i�( j1 ∧ j2)z .

Sum of Two Spins 1/2

In the ground state of the H atom,6 the orbital angular momentum is l = 0, but there
are two 1/2 spins to sum, one electron and a proton spin. There is a magnetic dipole-
dipole interaction, and neither angular momentum is conserved, while the resultant
gives good quantum numbers j,m j . Let us denote by α(1),β(1) the eigenstates of
the electron Sz and by α(2),β(2) those of the nucleus; the direct product of the two
bases gives the 4 states in Table18.1:

Wecan label all 4 stateswith the total angularmomentumcomponentm j by simply
summing the individual components, since the operators commute; we can also put
a total j = 1 label on the first and last lines. Indeeed, j = 0 is excluded because
it must give m j = 0, while higher values are excluded since they should also give
m j > 1 components that do not exist. The 4-dimensional Hilbert space has a three-
dimensional subspace j = 1, called the triplet, and the component | j = 1,m j = 0〉,
called the singlet, must be a combination of the two states with m j = 0. To separate
the two components, one can start from |α(1)α(2)〉 and lower the z component by
acting with j− = S−(1) + S−(2).

In the example of Table18.1, using the shift operators (18.5) S+ = �

(
0 1
0 0

)
,

S− = �

(
0 0
1 0

)
, the required shift operator is j− = S−(1) + S−(2).

6Specifically, I refer to Protium 1H ; theDeuterium 2H nucleus has a neutron and a proton and spin 1,
and the unstable Tritium 2H has spin 1/2, too.
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Since S−(1)|α(1)α(2)〉 = |β(1)α(2)〉, S−(2)|α(1)α(2)〉 = |α(1)β(2)〉,weobtain
at once the m j = 0 component of the triplet

| j = 1,m j = 0〉 = α(1)β(2)〉 + β(1)α(2)〉√
2

. (18.13)

The orthogonal combination must be the singlet

| j = 0,m j = 0〉 = α(1)β(2)〉 − β(1)α(2)〉√
2

. (18.14)

To verify that these are indeed eigenstates of j2 = S21 + S22 + 2S1S2, one can start
with S21 = S22 = 3

4�
2 and note that S1S2 = S1z S2z + S1x S2x + S1y S2y ; hence j2 =

3
2�

2 + 2[S1z S2z + 1
2 (S

+
1 S

−
2 + S−

1 S
+
2 )]. This makes the verification immediate. The

separation between the singlet ground state and the triplet excited state is small
(5.9 × 10−6 eV) and belongs to the so-called hyperfine structure of H. It corresponds
to a 21cm wavelength line (at 1420 MHz) and it is very important in Astrophysics,
since it is weakly absorbed by dust clouds, and so allows us to see the atomic H
clouds throughout the Milky Way and beyond.

Clebsh-Gordan Coefficients

Suppose we have a system consisting of two parts with angular momenta j1 and j2,
which would be conserved in the absence of a mutual interaction. From the separate
bases | j1,m1〉 and | j2,m2〉, one obtains the so-called direct product basis for the
system,

{| j1m1 j2m2〉}, m1 ∈ (− j1, j1),m2 ∈ (− j2, j2).

But since the total angular momentum is conserved, wemaywish to go to a new basis
|J, Mj 〉where Ĵ = ĵ1 + ĵ2 andM is the eigenvalue of Jz = j1z + j2z .Themaximum
value of Mj is Mmax

j = j1 + j2 and the minimum is Mmin
j = −Mmax

j . Therefore, the
space spanned by the direct product basis includes the space spanned by the basis of
J = j1 + j2, and this is the maximum J that can occur (since larger J would imply
largerMj ). Consequently, by taking linear combinations of the product basis vectors,
one can form a basis for the subspace J = j1 + j2; the number of linear combinations
for this J is 2( j1 + j2) + 1. As we know, these states are labelled by J and Mj ,
but not all of them have sharp m1 and m2. In fact only the maximum Mj and the
minimum Mj have such sharp values. Instead, Mj = j1 + j2 − 1 corresponds to two
differentmembers of the direct product basis, namely, | j1,m1 = j1, j2,m2 = j2 − 1〉
and | j1m1 = j1 − 1, j2m2 = j2〉. From these vectors, we know how to make one
linear combination belonging to J = j1 + j2: we must just apply the shift operator
Ĵ− = ĵ−1 + ĵ−2 to |J, M = J 〉, getting |J, M = J − 1〉. The orthogonal combination
must then belong to J = j1 + j2 − 1 and Mj = j1 + j2 − 1. Now, J = j1 + j2 − 1
must occur only once. In this way, one finds all the values from j = j1 + j2 to
j = | j1 − j2| and all appear once. Indeed, one can prove the following identity:
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j1+ j2∑
j=| j1− j2|

(2 j + 1) = (2 j1 + 1)(2 j2 + 1). (18.15)

Thus, in general one can go from the direct product basis to the total angular
momentum basis |JMj 〉 by a unitary transformation

| jm j 〉 =
j1∑

m1=− j1

j2∑
m2=− j2

| j1m1 j2m2〉〈 j1m1 j2m2| jm j 〉. (18.16)

One can do the reverse transformation by the inverse unitary transformation. The
ClebschGordan coefficients 〈 j1m1 j2m2| jm j 〉 canbe foundbyusing the shift operator
and orthogonalization as we have just seen. This is just the procedure that we used
to derive equations (18.13), (18.14). There are extensive tables of Clebsch Gordan
coefficients, that are also readily obtained by computer systems like Mathematica.
Here is another example.

Sum of L = 1 and a Spin 1/2

To find the angular momentum of an electron in a 2p orbital, we must combine l = 1
with the spin (3 × 2 = 6 states). One can denote the states by |ml,ms〉.

The maximum and the minimum m j must belong to j = 3
2 (it cannot be less,

because m j = 3
2 exists, but it cannot be more, because otherwise higher m j should

appear). But j = 3
2 means 4 states, and the other 2 must belong to j = 1

2 .
We know that (Table18.2)

|3
2
,
3

2
〉 = |1, 1〉|1

2
〉.

The right combination for j = 3
2 ,m j = 1

2 can be found by acting on the statem j = 3
2

with
j− = L− + s−.

Using the general formula L±|l,m〉 = √
l(l + 1) − m(m ± 1)�|l,m ± 1〉, and nor-

malizing,

Table 18.2 Angular momentum of a 2p electron

Stati m j j

|1, 1
2 〉 3

2
3
2

|1,− 1
2 〉, |0, 1

2 〉 1
2 Mixed 3

2 , 1
2

|0,− 1
2 〉, | − 1, 1

2 〉 − 1
2 Mixed 3

2 , 1
2

| − 1 − 1
2 〉 − 3

2
3
2
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|3
2
,
1

2
〉 =

√
2

3
|1, 0〉|1

2
〉 + 1√

3
|1, 1〉|−1

2
〉. (18.17)

The orthogonal combination is

|1
2
,
1

2
〉 = 1√

3
|1, 0〉|1

2
〉 −

√
2

3
|1, 1〉|−1

2
〉. (18.18)

From (18.17) we deduce that

〈1, 0, 1
2
,
1

2
|3
2
,
1

2
〉 =

√
2

3
, 〈1, 1, 1

2
,−1

2
|3
2
,
1

2
〉 =

√
1

3
,

and from (18.18) it follows that

〈1, 0, 1
2
,
1

2
|1
2
,
1

2
〉 =

√
1

3
, 〈1, 1, 1

2
,−1

2
|1
2
,
1

2
〉 = −

√
2

3
.

Thus, one can do very well without a table of Clebsch–Gordan coefficients.

Action of j2 on the LS Basis

In order to evaluate the matrix elements and to verify if a wave function is eigenstate
of j2, one can combine the identity j2 = L2 + S2 + 2L · S with

−→
L · −→

S = LzSz + 1

2
(L+S− + L−S+) ,

recalling that (Tables18.3 and 18.4)

〈l1m1|L±|l2m2〉 = �

√
l1(l1 + 1) − m2(m2 ± 1)δl1,l2δm1±1,m2 .

When summing more than two angular momenta, one can choose an arbitrary
order and combine the first two, then the resulting sums with the third, and so on.

Table 18.3 The Clebsch–Gordan coefficients for j1 = j2 = 1
2

m1 m2 j 〈 j1 j2m1m2| jm =
m1 + m2〉

1
2

1
2 1 1

1
2 − 1

2 1 1√
2

1
2 − 1

2 0 1√
2

− 1
2

1
2 1 1√

2

− 1
2

1
2 0 − 1√

2

− 1
2 − 1

2 1 1
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Table 18.4 The i Clebsch–Gordan coefficients for j1 = 1, j2 = 1
2

m1 m2 j 〈 j1 j2m1m2| jm =
m1 + m2〉

1 1
2

3
2 1

1 − 1
2

3
2

√
1
3

1 − 1
2

1
2

√
2
3

0 1
2

3
2

√
2
3

0 1
2

1
2 −

√
1
3

0 − 1
2

3
2

√
2
3

0 − 1
2

1
2

√
1
3

−1 1
2

3
2

√
1
3

−1 1
2

1
2 −

√
2
3

−1 − 1
2

3
2 1

The final pattern of possible total angular momenta does not depend on the arbitrary
order; in fact, it is an objective physical reality. However, when several multiplets
with the same j appear, their bases can get mixed by changing the order.

18.5 Photon Spin and Quantum Cryptography

There is an obvious difference between electron spin and photon spin: the photon,
unlike the electron, is a vector particle. In the case of a photon going up along z, we
can take an orthogonal basis (|x〉, |y〉) of linearly polarized states. The spin states
σz = ±1 correspond to the combinations |x〉±i |y〉√

2
. A field polarized at 45◦ is like a

vector that points at 45◦ |x〉+|y〉√
2

and is an equal mixture of both polarizations. This
quantum property has an important application in cryptography.

There is information that must remain secret for a long time, like passwords,
bank coordinates, or the controls of a commercial satellite-not to mention classified
military and security files. For thousands of years, there has been a competition
between those who wanted to encrypt secrets with increasingly ingenious codes and
those whowanted to decipher them; the Allies made great progress after breaking the
code of the Enigma machines of the Wehrmacht in World War II. With the advent of
Quantum Mechanics, the competition is now being won by those who want to keep
secrets. Various devices to achieve cryptography using the uncertainty principle have
come to the industrial level and are sold by various commercial companies. Here is
the principle of operation.
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The basic problem of cryptography is well known: two people, let us sayAlice and
Bob, need to exchange secret information, using a public channel such as a telephone
line or radio; people who have interest in the breaking the code can receive signals,
but cannot possibly understand them without a cryptographic key, which may be
represented by a secret number. If the number has many digits, the secret can be
effectively kept. But first, Bob and Alice must share this number. The essential
problem that Alice and Bob must solve is this: how to exchange the key while
avoiding it also being received by the eavesdropper who has access to the public
channel.

Charles Bennet of IBM ed Gilles Brassard of Montreal University developed
a method based on Quantum Mechanics to do this in a safe way. The signal is
transmitted as a succession of bits that can be 1 or 0. First, Alice and Bob agree that
a photon polarized “horizontally” is 1 and one polarized “vertically” means 0. In
order to transmit and receive photons, both have parallel polarizing filters that can
emit the light and read the polarizations. The filters act like projectors |x〉〈x |, which
beep if the signal is polarized along x. However, for the present purpose, Alice and
Bob also need a second filter rotated 45◦ compared to the first. So, indicated with a
dash of the polarization plane, the bit 1 can travel as − or \, while bit 0 can travel as
| or /.

If the filter used to receive is the same as that used to transmit, the bit is read
without errors, but if, for example, a signal emitted as | is picked up with the inclined
filter, half of the time, it ill be interpreted as −.

The transmission of the key is done as follows. Alice sends a random bit sequence,
even with randomly choosing the filter for sending them, and keeping track each time
about what she does. For each incoming bit, Bob randomly chooses which filter to
use to read it and makes a note of the filter used for the reading. After the end of
the photon transmission, Bob communicates to Alice, through the public channel,
the sequence of filters used in the readings (obviously without communicating the
sequence of readings). Next, Alice can reveal, using the same channel, which filters
were used correctly. Then, deleting the photons read by the wrong filter, both Alice
and Bob have obtained a sequence of bits that constitute the secret key.

A possible eavesdropper can receive the photons, but Quantum Mechanics pre-
vents him from doing what classically would be possible, i.e., he cannot observe
the state of polarization without the risk of changing it. Choosing between − and
| means choosing between two orthogonal states, like the states α and β of a spin.
When the eavesdropper receives the photon with the wrong filter, he not only reads
the polarization incorrectly, but can also change the polarization. This is similar to
the effect of the second Stern–Gerlach filter in Fig. 18.2. The errors introduced in this
way will eventually reveal his presence. Indeed, randomly choosing a small number
of bits among those making up the message, Alice and Bob can verify on the public
channel whether they arrived unchanged or not; in the latter case, the presence of the
eavesdropper will be unmasked.
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18.5.1 Rabi Model

As an example of the nontrivial behavior of quantum time-dependent systems, con-
sider the Rabi model, which is fundamental in Quantum Optics.7 It represents a spin
in a magnetic field or a two-level atom. Suppose that it is initially in the ground state
|g〉; then, it starts interacting with a radiation field whose frequency ω is comparable
to the separation ω0 between the ground state level Eg and the excited state Ee. The
difference Δ = ω − ω0 is called detuning. The Rabi Hamiltonian is:

H = −�ω0

2
σz − τ cos(ωt)σx . (18.19)

Perhaps, one might expect that the probability P of finding the atom in the excited
state |e〉 should vanish through energy conservation whenever Δ �= 0. However this
is not true, because H depends on the time, and both levels become dressed with
light. Let Ee = �ω0

2 = −Eg , and let us write the wave function as

ψ(t) = ag|g〉 exp
(−i Egt

�

)
+ ae|e〉 exp

(−i Eet

�

)
; (18.20)

the Schrödinger equation yields

ȧg = i
�
τ cos(ωt) exp

(−iω0t
�

)
ae

ȧe = i
�
τ cos(ωt) exp

( iω0t
�

)
ag.

(18.21)

This is readily solved exactly, but to allow for a simple analytic formula, we can
neglect the quickly rotating terms in ω + ω0, while keeping the slow ones in ω − ω0.

This is known as the Rotating Wave Approximation. Then, we obtain the easily
solvable equations

ȧg = i
2�

τ exp( i(ω−ω0)t
�

)ae
ȧe = i

2�
τ exp(−i(ω−ω0)t

�
)ag.

(18.22)

Now it is elementary to find that

αe(t) = iτ

��
exp

(
i t

2
Δ

)
sin

(
�t

2

)
; (18.23)

the Rabi frequency � defined by

�� =
√

τ 2 + (�Δ)2. (18.24)

7Isidor Isaac Rabi (1898–1988) was a U.S. Physicist, who received the Nobel Prize in 1944.
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ForΔ = 0, the atom jumps up and down with the frequency τ
�
. Increasing the detun-

ing makes the Rabi oscillations more frequent, while the system spends less and less
time in the excited state.



Chapter 19
Systems of Particles

The study of many-body systems requires new concepts in
dramatic contrast with Classical Physics. Two quantum
particles can be in an entangled state, and like particles
must be entangled because of a permutation symmetry of the
wave function.

19.1 N-Particle Systems

We need to extend the quantum mechanical theory to the case of N particles; sep-
arately, the particles would be described by a Schrödinger equation or the Pauli
equation, depending on their spins. As in the classical case, the Hamiltonian of the
system will be the sum of those of the particles plus an interaction term (possibly).
For independent particles (no interaction), the Hamiltonian is, in obvious notation

Ĥ(1, 2, . . . , N ) =
N∑

n

ĥ(n),

where h(n) describes particle n. The wave function Ψ (1, 2, . . . , N ) depends on all
the orbital and spin degrees of freedom of the particles, so it is a spinor in the spin
space of each particle. Consequently, the scalar product of two wave functions Ψ

and Φ can be written symbolically as

〈Φ|Ψ 〉 =
∫

Φ∗Ψ d1 . . . dN , (19.1)

where, besides the integration over the coordinates, one must understand the scalar
products of the corresponding spins, for particles that possess one. In this way, one
can define normalized states. To describe the state of the system, one needs a set
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of single particle states {A, B,C . . .} where all the particles of all kinds can be
accommodated. The many-body wave functionψ is the amplitude of having particle
1 in some state A, particle 2 in some B, and so on. The Schrödinger equation for N
= 2 particles reads as:

i�
∂Ψ (1, 2)

∂t
= H(1, 2)Ψ (1, 2);

if H is time-independent, the time dependence of Ψ factors as usual, and

H(1, 2)Ψ (1, 2) = EΨ (1, 2). (19.2)

Here, we find a new example of separation of variables: if

h(1)ψa(1) = εaψa(1),
h(2)ψb(2) = εbψb(2),

where {ψa} and {ψb} are complete set of solutions for one particle, then ψab(1, 2) =
ψa(1)ψb(2) solves (19.2) with E = Eab = εa + εb. These are special solutions, but
the most general solution can be expanded on the set of those functions. Up to this
point, the extension to several particles seems to lead to mathematical complications
but no new ideas. However, we need only look to the next section.

19.2 Pauli Principle: Two Identical Particles

For identical particles, a new ingredient comes into play. Consider, for instance, two
electrons, and let A denote the spinor of electron 1 and B denote the spinor of electron
2. Let the operator P(i, j) exchange two electrons (coordinates and spins), putting 1
in B and 2 in A. It is clear that the physical state does not change. There can exist no
way to distinguish one electron from another. They are unlike billiard balls, which
can be marked with a chalk. In the wave function they are marked 1 and 2, so P(1, 2)
does a mathematical operation. Since P(1, 2)2 = 1, P(1, 2) has eigenvalues of ±1,
one could argue that sometimes we get 1 and sometimes –1. That’s reasonable. But
instead, we get always –1, when exchanging two electrons, or two protons, or two
identical particles having half integer spins. These are called Fermions. On the other
hand, the Bosons (integer spin particles) always have P(1, 2) = 1. In summary:

P(1, 2)Ψ (1, 2) = Ψ (2, 1) =
{−Ψ (1, 2) Fermions,

Ψ (1, 2) Bosons.

At the fundamental level, Bosons are related to fields and Fermions to matter. Pions
(spin 0), Photons and the vector particlesW±, Z0 (spin 1) are Bosons, like Gravitons
(spin 2, provided they exist). Electrons, Neutrinos, Quarks and nucleons are 1/2 spin
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Fermions. On the other hand, composite systems like nuclei and atoms may have
integer or half-integer spins in their ground states and will behave accordingly at
low enough energy. The terms come from the names of Enrico Fermi1 and Satyen-
dranath Bose.2 The distinction between Bosons and Fermions is relevant to angular
momentum, that is, to the way the wave function of a single particle transforms under
rotation. The Pauli principle says that the permutation symmetry of a many-particle
wave function (also called the statistics of the particle) depends on its spin. Why
this connection? This is a new law of Nature that cannot be deduced from the postu-
lates of QuantumMechanics alone. However, in relativistic QuantumMechanics the
wave equations depend on spin: one has the Klein-Gordon equation for spin 0, the
Dirac equation for spin 1/2, for the massive particles of spin 1, the Proca equation,
and so on. All those equations are untenable as single-particle equations, because
of negative-energy solutions and other severe reasons. They can only stand as field
equations, and the quanta of these fields are the particles. Then, the requirement
that the field have a ground state (the vacuum state) is mandatory, and Fermion fields
have one only if their wave functions is antisymmetric, while Bose fields require total
permutation symmetry. In relativistic field theory, this is the spin-statistics theorem
(Pauli 1940), but un the non-relativistic theory, it must be taken as a new principle.

Let φ1(x1), φ2(x2) denote two wave functions for a boson field. They could rep-
resent wave functions of α particles or the wave vectors of two normal modes of the
electromagnetic field. A two-boson wave function can be taken in the form

Φab(1, 2) = 1√
2
[φa(1)φb(2) + φa(2)φb(1)] . (19.3)

One can represent the same two-body state in second quantization in the following
form:

|ab〉 = a†1a
†
2 |vac〉. (19.4)

Here, a†1, a
†
2 are the creation operators of the harmonic oscillators whose quanta

have the space-time dependence φa(x, t) and φb(x, t)), while |vac〉 stands for the
ground state of all the oscillators. The presence of a boson of each type is equivalent
to the state with both modes in the first excited state. Thus, Eqs. (19.3) and (19.4)
contain the same information, and the quantum states built through the two methods
are in complete one-to-one correspondence if one takes that all the operators of
different modes commute ([a†1, a†2]− = 0, [a†1, a2]− = 0 and the like). The second
quantization, invented by Dirac, is a clever notation, and in addition, it is designed to

1Enrico Fermi (Rome 1901–Chicago 1954) was one of the great scientists of the twentieth century,
both for theoretical and experimental achievements. Among his contributions: the Fermi statistics,
the theory of the Weak Interactions, and the discovery of the Δ++ resonance. He was awarded the
Nobel price in 1938 and he took advantage of the trip to Stockholm to quit fascist Italy for America,
where he became a citizen and built the first nuclear reactor.
2Satyendranath Bose, Indian physicist (Calcutta 1894–1974), developed the statistics of integer
spin particles. His work was completed in cooperation with Albert Einstein.
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handle the transitions between states with different numbers of bosons more easily.
For each mode, the known commutation rules [a, a†]− = 1 apply.

Using two orthogonal spin-orbitalsψ1(x1), ψ2(x2), onemustwrite a two-electron
wave function in agreement with the Pauli principle. The antisymmetric wave func-
tion, or Slater determinant, setting a Fermion in each of the two spinors reads as:

Ψab(1, 2) = 1√
2
[ψa(1)ψb(2) − ψa(2)ψb(1)]

= 1√
2!

∣∣∣∣
ψa(1) ψb(2)
ψa(1) ψb(2)

∣∣∣∣ ≡ |ψaψb|. (19.5)

Ψ (1, 2) vanishes if ψ1 = ψ2; one cannot put two electrons in the same spin-orbital.
This rule is the Pauli principle. N electrons occupy N distinct spin-orbitals. In the
ground state, the lowest N spin-orbitals are occupied (the aufbau principle).. This is
the ground configurations of atoms and molecules.3

Since many one-body states are degenerate, the ground state configuration built
in this way is not unique in general. A common misconception leads some people
to believe in the existence of individual spin-orbitals where the electrons belong in
the many electron states. Equation (19.5) appears to say that the two electrons are in
single-particle states ψa and ψb and the two-particle state is the Slater determinant.
However, any unitary transformation, like ψa = αξa + βξb, ψb = βξa − αξb with
α2+β2 = 1, gives4 the same determinant, butwith different orbitals.While the Slater
determinant represents a possiblewave function of a physical two-particle state, there
is no way to assign the individual electrons unique spin-orbitals in the physical state.
This remark extends to any many-body state and is one of the manifestations of
entanglement (see Chap. 27).

In summary, the Pauli theorem says that for two particles, the admissible product
functions are:

⎧
⎨

⎩

ψa(1)ψb(2) different particles,
ψa(1)ψb(2) − ψa(2)ψb(1) identical fermions,
ψa(1)ψb(2) + ψa(2)ψb(1) identical bosons.

For N identical Bosons, on the other hand, one must symmetrize. Instead of
determinants one writes permanents. In both cases, the deviations from classical
predictions are dramatic.

3This simple rule holds as long as we can neglect the Coulomb interactions, which canmix different
configurations. The antisymmetry principle always holds.
4As a consequence of det (XY ) = det (X)det (Y ).

http://dx.doi.org/10.1007/978-3-319-71330-4_27
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19.2.1 Simple Examples

In atoms and in condensed matter, the electron-electron interactions are far from
negligible, but the determinantal wave functions are useful in approximate methods
(Hartree-Fok and various Density Functional schemes) in which the interactions are
accounted for by means of an effective potential or mean field. Many qualitative
facts can be understood in terms of an effective central field V (r). Changing V (r),
the radial wave functions and the level energies change, but the multiplet structure
depends mainly on symmetry and is not much affected.

So, He has a 1s2 configuration, with two opposite spin electrons in a 1 s level with
a modified nuclear charge Z , Li has 1s22s, Be has 1s22s2, B 1s22s22p, and so on.
This simple rule breaks down for heavy elements as a result of many complications
including relativistic effects.

Singlet and Triplet States of He

Let a(
−→r ) denote the 1 s orbital in an independent particle approximation (central

field) for the He atom. The Hamiltonian is, in obvious notation,

H =
2∑

i=1

[
p2i
2m

− 2e2

ri

]
+ e2

r12
. (19.6)

According to the Pauli principle, we can put the two electrons in the spin-orbital
states ψ1 = a(

−→r )α, ψ2 = a(
−→r )β; a more expressive notation is ψ1 = a(

−→r ) ↑
, ψ2 = a(

−→r ) ↓. The ground state reads as:

Φ(1, 2) = |a(
−→r ) ↑ a(

−→r ) ↓ |,

that is,

Φ(1, 2) = 1√
2
[ψ1(1)ψ2(2) − ψ1(2)ψ2(1)]

= a(
−→r 1)a(

−→r 2)
[α(1)β(2)−α(2)β2(1)]√

2
= a(

−→r 1)a(
−→r 2)χS.

Here,

χS = α(1)β(2) − β(1)α(2)√
2

is the spin singlet, such that

S2χS ≡ (S(1) + S(2))2χS = 0.

It is no accident that we got a spin eigenstate, since the Hamiltonian H commutes
with the spin operators. Since weak spin-orbit coupling terms are neglected, H is
actually spin-independent. Therefore, we can label all the energy eigenstates by the
eigenvalues S,mS of S2, Sz . We agree with the Pauli principle, since χS is odd under
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P(1, 2), and the orbital function is even under the exchange of r1 and r2; the total
wave function is odd.

The triplet (S = 1) combinations are even:

χT
MS

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

χT
MS=1 = α(1)α(2),

χT
MS=0

= α(1)β(2)+β(1)α(2)√
2

,

χT
MS=−1 = β(1)β(2).

They admit odd orbital functions. There is no such function with ony one orbital.
Letting b denote the 2 s orbital of He, one can model the excited states of the 1s2s
configuration:

D↑↑ = |a ↑ b ↑ |, D↑↓ = |a ↑ b ↓ |,
D↓↑ = |a ↓ b ↑ |, D↓↓ = |a ↓ b ↓ |.

For example, with the notation a(1) ≡ a(
−→r 1), b(1) ≡ b(−→r 1), and so on,

D↑↓ = a(1)b(2)α(1)β(2) − a(2)b(1)α(2)β(1)

is correctly antisymmetric, but it is no singlet and no triplet. Since H is spin-
independent, we have the right to demand spin eigenstates. Indeed,

ΨS=0 = D↑↓ + D↓↑√
2

= a(1)b(2) + b(1)a(2)√
2

χ S. (19.7)

and

ΨS=1 = a(1)b(2) − b(1)a(2)√
2

χT
MS

; (19.8)

MS = 1 is just D↑↑, MS = −1 is D↓↓. These are single Slater determinants; for
MS = 0, one needs the combination D↑↓+D↓↑√

2
.

The Exchange Interaction

Let us compute the expectation value of the Coulomb interaction e2

r12
≡ e2

|r1−r2| over
the two-electron eigenstates of spin. The spin averages yield 1.

For the triplets, the results are independent of Ms . One finds that:

〈Ψ↑↑| e2r12 |Ψ↑↑〉 = 1
2 〈a(1)b(2) − b(1)a(2)| 1

r12
|a(1)b(2) − b(1)a(2)〉

= 1
2 [〈a(1)b(2)| 1

r12
|a(1)b(2)〉 − 〈b(1)a(2)| 1

r12
|a(1)b(2)

−〈a(1)b(2)| 1
r12

|b(1)a(2)〉 + 〈b(1)a(
−→r 2)| 1

r12
|b(1)a(2)〉];

(19.9)

since 1 and 2 are dummy indices,
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〈
Ψ↑↑| e

2

r12
|Ψ↑↑

〉
= (a(1)b(2) − b(1)a(2)| 1

r12
|a(1)b(2)). (19.10)

The first term

C = 〈a(1)b(2)| 1

r12
|a(1)b(2)〉 =

∫
d3r1d

3r2
|a(r1)|2|b(r2)|2

r12
(19.11)

has a clear electrostatic meaning and is called the Coulomb term; the second contri-
bution

−Ex = −(b(1)a(2)| 1

r12
|a(1)b(2))

is the exchange term. Ex is always positive, so its contribution is negative for the
triplet; it turns out to be and positive for the singlet, as one can verify by working
out the expectation value over Ψ↑↓. The metastable triplet 1s2s3S of He is below
the singlet 1s2s1S by an amount 2Ex . This prediction is in fair agreement with the
spectroscopic evidence.

As we see in Eq. (19.8), the triplet wave function is antisymmetric when one
exchanges −→r 1 with −→r 2 and the amplitude gets small at small distances. By this
simple mechanism, high spin leads to lower repulsion. According to Hund’s first
rule, the ground state of any atom has the maximum possible spin compatible with
its electronic configuration. This is the basic reason for the existence of magnetism
in solids. The exchange term plays a key role in explaining the cohesion of solids
and the covalent bond in general.

19.3 Many-Electron States and Second Quantization

The determinantal wave functions are a basis for expanding all totally antisym-
metric Fermion wave functions. For N independent electrons, H = ∑N

i h(i), and
Schrödinger’s equation HΨ = EΨ is separable. One can solve in terms of the
single-particle solutions of h(i)ψμ(i) = εμψμ(i) by setting

Ψ (1, 2, . . . , N ) = Â
∏

i

ψ(i),

with E = ∑
μ ε(μ); here Â is the anti-symmetrizer that converts the product to a

Slater determinant. In general, one can show that in order to normalize the wave
function, one must multiply the N electron anti-symmetrized product by 1√

N ! . A
convenient notation for the normalized wave function is:

Φ(1, 2, . . . N ) = |ψ1ψ2 . . . ψN |.
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The N electron states must be a linear combinations of Slater determinants made
with spin-orbitals.

Consider the set of orthonormal spin-orbitals that are eigenspinors of some one-
body Hamiltonian h such that hψμ = εμψμ. For 3 noninteracting electrons, a nor-
malized eigenfunction of the total Hamiltonian H = h(a)+h(b)+h(c)with energy
Eabc = εa + εb + εc is of the form

Φa,b,c(1, 2, 3) = 1√
3!det

⎛

⎝
ψa(1) ψa(2) ψa(3)
ψb(1) ψb(2) ψb(3)
ψc(1) ψc(2) ψc(3)

⎞

⎠ . (19.12)

This means Φa,b,c(1, 2, 3)
√
3! = ψa(1)ψb(2)ψc(3) + ψa(2)ψb(3)ψc(1) + ψa(3)

ψb(1)ψc(2)−ψa(1)ψb(3)ψc(2)−ψa(3)ψb(2)ψc(1)−ψa(2)ψb(1)ψc(3).One-body
operators depend on the coordinates (and spin) of one electron at a time, that is, are
of the form F̂ = f̂ (1) + f̂ (2) + f̂ (3). One can easily verify that the expectation
values

〈Φa,b,c|F̂ |Φa,b,c〉 = 〈ψa| f̂ |ψa〉 + 〈ψb| f̂ |ψb〉 + 〈ψc| f̂ |ψc〉. (19.13)

Thus, the expectation values of momentum, angular momentum, kinetic energy and
the like are the sum of those of the spin-orbitals. The charge density is

〈Φa,b,c|ρ̂(x, t)|Φa,b,c〉 = |ψa(x, t)|2 + |ψb(x, t)|2| + ψc(x, t)|2. (19.14)

Here, |.|2 denotes the square norm of spinors. One can show that the same rule applies
for any number N of electrons.

One can verify easily for 3 electrons and also prove in general for any number
of electrons that all the out-of-diagonal elements between determinants of one-body
operators vanish if the states differ by two or more spin-orbitals. If the states differ
by one spin-orbital, one obtains the matrix element between the different orbitals.
For instance, for 3 electrons,

〈Φabc| p(1) + p(2) + p(3)|Φdbc〉 = 〈ψa(1)| p(1)|ψd(1)〉. (19.15)

For a prototype two-body operator, I introduce the Coulomb interaction, which I
write in obvious notation:

HC =
∑

i< j

1

ri j
= 1

r12
+ 1

r13
+ 1

r23
.

Developing the expectation value 〈Φabc|HC |Φabc〉 with the determinant (19.12), one
gets 6*3*6 = 108 terms.

So, I introduce a lighter notation, writing a(1) instead of ψa(1) and the like. Then
I observe that the 6 terms a rising from the development of left determinant are
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permutations of 1, 2 and 3. We can apply the inverse permutation to all the terms.
From odd permutations we collect a minus sign from both determinants. So one can
write

〈Φabc|HC |Φabc〉 =
〈
a(1)b(2)c(3)

∣∣∣∣
1

r12
+ 1

r13
+ 1

r3

∣∣∣∣ det

⎛

⎝
a(1) a(2) a(3)
b(1) b(2) b(3)
c(1) c(2) c(3)

⎞

⎠
〉
, (19.16)

and these are 18 terms. Consider the terms in 1
r12

. Since there is no operator acting on
3, only the terms with c(3) multiplied by c(3) survive. Therefore, the contribution is

〈
a(1)b(2)| 1

r12
|
(
a(1) b(1)
a(2) b(2)

) 〉
.

Hence, the result is:

〈Φabc|HC |Φabc〉 =
〈
a(1)b(2)

∣∣∣ 1
r12

∣∣∣∣

(
a(1) b(1)
a(2) b(2)

)
〉 + 〈a(1)c(3)

∣∣∣ 1
r13

∣∣∣
(
a(1) c(1)
a(2) c(2)

) 〉

+〈b(2)c(3)
∣∣∣ 1
r23

∣∣∣
(
b(2) c(2)
b(3) c(3)

) 〉
.

This can be developed and simplified to read as

〈Φabc|HC |Φabc〉 = C − E, (19.17)

where the Coulomb term is

C = 〈a(1)b(2)

∣∣∣∣
1

r12

∣∣∣∣ a(1)b(2)〉 + 〈a(1)c(3)

∣∣∣∣
1

r13

∣∣∣∣ a(1)c(3))〉 + 〈b(2)c(3)
∣∣∣∣
1

r23

∣∣∣∣ b(2)c(3)〉;
(19.18)

the exchange term is

E = 〈a(1)b(2)

∣∣∣∣
1

r12

∣∣∣∣ a(2)b(1)〉 + 〈a(1)c(3)

∣∣∣∣
1

r13

∣∣∣∣ a(3)c(1))〉 + 〈b(2)c(3)
∣∣∣∣
1

r23

∣∣∣∣ b(3)c(2)〉;
(19.19)

and it vanishes for antiparallel spins, since the matrix elements imply spin scalar
products. The treatment extends directly to a many-body system where the sums
extend to all pairs (Fig. 19.1).

Next, we consider the off-diagonal terms in a many-body system. If just one spin
orbital differs from bra and ket, the treatment is similar. Suppose there is a different
spin-orbital d in the ket. Then, we must consider
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Fig. 19.1 Graphical representation of the direct term (19.18) (left) and exchange term (19.19); the
sum over pairs of spin-orbitals is implied

Fig. 19.2 Graphical representation of the direct (left) and exchange terms in theCoulomb scattering
ab → ac

〈Φabc|HC |Φabd〉 =
〈
a(1)b(2)c(3)

∣∣∣∣
1

r12
+ 1

r13
+ 1

r3

∣∣∣∣det

⎛

⎝
a(1) a(2) a(3)
b(1) b(2) b(3)
d(1) d(2) d(3)

⎞

⎠
〉
. (19.20)

The result vanishes if the spin of d is opposite to the spin of c, since HC commutes
with the z component of the total spin. Therefore, assume that the spins of c and d
are the same, but 〈c|d〉 = 0. The terms in 1

r12
vanishes, but 1

r13
and 1

r23
do contribute.

The result is:

〈Φabc|HC |Φabd〉 =
occ∑

k

[
〈k(1)c(2)| 1

r12
|k(1)d(2〉) − 〈k(1)c(2)| 1

r12
|k(1)d(2)〉

]
,

(19.21)

where
∑occ

k sums over the occupied states and the second term is the exchange
contribution (for parallel spins) (Fig. 19.2). If both spin-orbitals are different in the
ket, the calculation is easy:

〈Φabc|HC |Φaed〉 =
〈
a(1)b(2)c(3)

∣∣∣∣
1

r12
+ 1

r13
+ 1

r3

∣∣∣∣det

⎛

⎝
a(1) a(2) a(3)
e(1) e(2) e(3)
d(1) d(2) d(3)

⎞

⎠
〉
, (19.22)

but 1
r12

and 1
r13

yield nothing by orthogonality, and one is left with
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Fig. 19.3 Graphical
representation of the direct
(left) and exchange terms
representing the Coulomb
scattering ab → de

〈Φabc|HC |Φaed〉 = 〈b(2)c(3)
∣∣∣
1

r23

∣∣∣e(2)d(3)〉 − 〈b(2)c(3)
∣∣∣
1

r

∣∣∣d(2)e(3)〉, (19.23)

where the second term is of the exchange type (Fig. 19.3).
As a result of a rather involved calculation, we obtained a simple rule that extends

directly to any number of electrons.

19.4 Hellmann–Feynman Theorem

One of the few exact results for interacting many-body problems runs as follows. Let
H = H(λ) denote a many- body Hamiltonian which depends on a parameter λ and
E denote an eigenstate of H . Then E(λ) = 〈Ψ |H(λ)|Ψ 〉 and a small dλ produces a
first-order variation dΨ, which is orthogonal to Ψ . Therefore,

dE

dλ
=

〈
Ψ |dH

dλ
|Ψ

〉
. (19.24)

19.5 Second Quantization for Fermions

In Sect. 16.2 the creator and annihilation operators for Boson excitations of a 1d field,
namely the harmonic oscillator, were presented. In a similar way, the second quan-
tization formalism for Fermions allows us to deal with phenomena where particles
are created or destroyed. One such phenomenon is the decay of the neutron into a
proton, an electron and an antineutrino

n → p + e + ν̄;

in pair creation, an electron and a positron are created by γ rays, and many more
reactions are known in elementary particle physics. In condensed matter physics, at
much lower energies, the formalism is still useful. The promotion of an electron from
a filled to an empty level can be described as the creation of an electron-hole pair.
In scattering processes, when all the particles are conserved, one can proceed with
Slater determinants in first quantization; however, second quantization formalism is

http://dx.doi.org/10.1007/978-3-319-71330-4_16
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generally preferred, since it is much more agreable to work with; the picture is that
the incoming particle is destroyed and the outgoing electron is created.

In order to change the formalism from Bosons to Fermions, we must simply
replace permanents with determinants. In place of an N-times excited oscillator
representing N bosons in a given mode, we now consider N -fermion determinants
|u1u2 . . . uN |, where the spin-orbitals are chosen from a complete orthonormal set
{wi }. The index i can be discrete or continuous, but implies a fixed ordering of the
complete set. In this way, one can convene, e.g., that in |u1u2 . . . uN |, the indices
1 . . . N are in increasing order, thereby avoiding multiple counting of the same state.
The zero-particles or vacuum state |vac〉 replaces the oscillator ground state. For the
determinants, it is generally preferable to use a compact notation like |umun|, rather
than the explicit 1√

2
Det

(
um(1) um(2)
un(1) um(2),

)
which contains the same information. In

second quantization, we aim for a unified description of all the Hilbert spaces with
any number of particles, startingwith the no-particle state that is the vacuumor |vac〉;
the one-body state with one particle in spin-orbital uk is denoted by c†k |vac〉 and is
described as the effect of the creation operator c†k over the vacuum. Similarly, the
2-body determinantal state |umun| becomes c†mc

†
n|vac〉, and the 3-body determinant

|umunu p| is written as c†mc†nc†p|vac〉.
Since a determinant is odd when columns are exchanged, we want an anticom-

mutation rule
[c†m, c†n]+ ≡ c†mc

†
n + c†nc

†
m = 0. (19.25)

It follows that the square of a creation operator vanishes.
Adding a particle to any state cannot lead to the vacuum state,

〈vac|c†m = 0. (19.26)

By definition,
c†m{c†nc†r |vac〉} = c†mc

†
nc

†
r |vac〉. (19.27)

The notation suggests that c†m is the Hermitean conjugate of cm; this is called an
annihilation operator. Taking the conjugate of (19.27)

{〈vac|cr cn}cm = 〈vac|cr cncm (19.28)

and taking the scalar product with c†mc
†
nc

†
r |vac〉, we deduce that

{〈vac|cr cn}cm | c†mc†nc†r |vac〉 = 1. (19.29)

If we now consider cm as acting on the right, we see that it is changing the 3-body
state c†mc

†
nc

†
r |vac〉 into the 2-body one c†nc†r |vac〉.Thus, annihilation operator is a well

deserved name: an annihilation operator cm for a fermion in the spin-orbital state um
removes the leftmost state in the determinant, leaving a N − 1 state determinant:
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c1|u1u2 . . . uN | = |u2 . . . uN | (19.30)

and
cm |vac〉 = 0. (19.31)

It obeys the conjugate of the anticommutation rules (19.25), namely,

[cm, cn]+ ≡ cmcn + cncm = 0, c2m = 0. (19.32)

Next, consider
cnc

†
mc

†
nc

†
r |vac〉, n,m, r all different. (19.33)

Since the creation operators anticommute, we get

−cnc
†
nc

†
mc

†
r |vac〉 = c†mc

†
r |vac〉,

since them state is created at the leftmost place in the determinant, but is annihilated
at once. This shows that creation and annihilation operators also anticommute,

[cn, c†m]+ = 0, n 
= m. (19.34)

As long as the indices are different, c and c† all anticommute, so the pairs
cncm ,cnc†m ,c

†
ncm and c†nc

†
m can be carried through any product of creation or anni-

hilation operators in which the indices n, m do not occur.
Next, we note that c†p|vac〉 ≡ |p〉 is a one-bodywave function; cpc†p|vac〉 = |vac〉

and c†pcpc
†
p|vac〉 = c†p|vac〉. Now one can check that

np ≡ c†pcp (19.35)

is the occupation number operator, since it has eigenvalue 1 on any determinant
where p is occupied and 0 if p is empty. On the other hand, cpc†p has eigenvalue
0 on any determinant where p is occupied and 1 if p is empty. Thus in any case
cpc†p + c†pcp = 1. Since this holds on all the complete set it is an operator identity
and we may complete the rules with

[cp, c†q ]+ = δpq . (19.36)

Note that n†p = np and n2p = np.

It is important to be able to change basis, i.e., to switch from basis set {an} to a
new set {bn}; since

|bn >=
∑

k

|ak >< ak |bn >, (19.37)



304 19 Systems of Particles

the rule is
b†n =

∑

k

a†k < ak |bn >, bn =
∑

k

ak < bn|ak > . (19.38)

It is often useful to go from any set {un} to the coordinate representation intro-
ducing the creation and annihilation field operators

{
Ψ †(x) = ∑

n c
†
nu

†
n(x)

Ψ (x) = ∑
n cnun(x),

(19.39)

(here, u†n denotes the conjugate spinor). Note that c†p|vac〉 is a one-electron state
and corresponds to the first-quantized spinor u p(x); Ψ †( y)|vac〉 is a one-electron
state and corresponds to the first-quantized spinor with spatial wave function∑

n u
†
n( y)un(x) = δ(x − y); thus, it is a perfectly localized electron. The rules

are readily seen to be

[Ψ (x), Ψ ( y)]+ = 0, [Ψ †(x), Ψ †( y)]+ = 0, (19.40)

and

[Ψ †( y), Ψ (x)]+ =
∑

p,q

[c†p, cq ]+u p†(x)uq( y) =
∑

p,q

u p†(x)u p( y) = δ(x − y),

(19.41)
where the δ also imposes the same spin for both spinors.

A one-body operator V (x) in second-quantized form becomes

V̂ =
∫

dxΨ †(x)V (x)Ψ (x) =
∑

p,q

Vp,qc
†
pcq . (19.42)

This gives the correct matrix elements between determinantal states, as one can
verify.

The above expressions imply spin sumalongwith the space integrals, although this
was not shown explicitly; let me write the spin components, for one-body operators:

V̂ =
∑

α,β

∫
dxΨ †

α Vα,β(x)Ψβ (19.43)

For the spin operators, setting � = 1, and using the Pauli matrices, Sz = 1
2σz, S+ =(

0 1
0 0

)
, and the rule (19.42), one finds

Sz = 1

2

∫
dx

(
Ψ

†
↑ (x)Ψ↑(x) − Ψ

†
↓ (x)Ψ↓(x)

)
, S+ =

∫
dxΨ †

↑ (x)Ψ↓(x). (19.44)
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When using a discrete basis and notation, we shall write

S+ =
∑

k

c†k↑ck↓, (19.45)

which is obtained from (19.44) by taking a Fourier transform in discrete notation. A
two-body operator U (x, y) becomes

Û =
∫

dx
∫

dyΨ †(x)Ψ †(y)U (x, y)Ψ (y)Ψ (x) =
∑

i jkl

Ui jklc
†
i c

†
j clck (19.46)

(please note the order of indices carefully). The Hamiltonian for N interacting elec-
trons in an external potential ϕ(x) is the true many-body Hamiltonian in the non-
relativistic limit that we shall often regard as the full many-body problem for which
approximations must be sought. It may be written as

H (r1, r2, . . . , rN ) = H0 (r1, r2, . . . , rN ) +U (r1, r2, . . . , rN ) , (19.47)

where H0 is the free part

H0 = T + Vext =
∑

i

{
−1

2
∇2
i + V (ri )

}
=

∑

i

h0(i), (19.48)

with T the kinetic energy and Vext the external potential energy, while

U = 1

2

∑

i 
= j

uC (ri − ri ) (19.49)

is the Coulomb interaction. This Hamiltonian may be written in second-quantized
form

H = H0 +U,

H0 =
∑

σ

∫
drΨ †

σ (r)h0Ψσ (r),

U = 1

2

∑

α,β,γ,δ

∫ ∫
dxdyψ†

α(x)ψ†
β(y)uC (x − y)αγ,βδΨδ(y)Ψγ (x). (19.50)

Often, the spin indices are understood as implicit in the integrations. It should be
kept in mind that relativistic corrections are needed in most problems with light
elements and the relativistic formulation is neededwhen heavy elements are involved.
Fortunately, the ideas that we shall develop lend themselves to a direct generalization
to Dirac’s framework.
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19.5.1 Fano and Anderson Models

As an example of the above formalism, consider the following first-quantized Hamil-
tonian Hf q , representing a discrete level |0〉with energy ε0, and a continuum of levels
|k〉 with energy εk ;

Hf q =
∑

k

εk |k〉〈k| + ε0|0〉〈0| +
∑

k

[Vk |k〉〈0| + V ∗
k |0〉〈k|]. (19.51)

The last term allows for a mixing between the continuum and the discrete level.
This model represents a single particle (Fermi or Bose) that can hop from a localized
state to a band of states and back. The second-quantized version of the model is the
Fano model

HF =
∑

k,σ

εk n̂kσ + ε0n̂0σ +
∑

k

[Vkc
†
kσ c0σ + h.c.]. (19.52)

(Here, h.c. stands for the Hermitean conjugate of the preceding term.)
This represents the same physics as (19.51) if it is taken to act in single-particle

subspace (but now the anti-commuting creation operators are for spinors and σ

denotes spin; the solution to this model is very instructive and is deferred to Chap.24.
The same formalism lends itself to important extensions. It allows us to work with

a many-body systems where the electron states are filled up to a Fermi level. Finally,
we may add an interaction term:

HF =
∑

k,σ

εk n̂kσ + ε0n̂0σ +
∑

k

[Vkc
†
kσ c0σ + h.c.] +Un0+n0−. (19.53)

This is the model introduced by Anderson to describe magnetic impurities in metals
with many interesting many-body complications.

19.6 Quasiparticles: Bosons, Fermions and Anyons

The quantum many-body problem in atoms and condensed matter systems is
extremely involved, since the electron-electron interaction is always important, but
some excitations allow a simple effective description reminiscent of non-interacting
models. For instance, the excitation that corresponds to the threshold of light absorp-
tion in a semiconductor, in a rigorous treatment involves all the electrons and the
nuclei of the system; yet, it admits a simple, rather accurate and enlightening descrip-
tion as a one-electron interband transition in an independent particle model. How-
ever, in this description, the fermion is not simply the electron, but has a renormalized
mass, a modified gyromagnetic ratio and a finite lifetime. In other words, it is a quasi-
electron. The absence of an electron below the Fermi level gives rise to complicated
excited states of the many-body system that are well described by Fermion quasipar-

http://dx.doi.org/10.1007/978-3-319-71330-4_24
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ticles, the so-called holes. Such a description, originally due to Lev Landau, is borne
out by themodernmany-bodyGreen’s function formalism and is extremely useful for
describing complex situations quantitatively and figuring out what happens. Even in
strongly correlated systems, the low energy excitations behave as Fermions of Boson
weakly interacting particles, that are known as quasi-particles since they have a finite
width in energy that can be interpreted as a finite life time. A polariton is an elec-
tron dressed by photons in a solid-state environment. Many excitations are quantized
boson quasi-particles, like the phonons, charge density waves or spin waves. Some
of the higher energy excitations (plasmons, or quantized plasma oscillations) are

also oscillator-like and can be treated as Bosons. Their frequency is ωp =
√

4πne2
m ,

where n is the density, e the electron charge and m the electron mass. Classically,
they can be understood as being due to the oscillation of the electrons in a slab
against a positive background. A shift η produces a surface density σ = ηne, and
the electric field E = 4πσ causes the oscillations. The plasmons are the quanta of
this oscillator. A more quantitative theory is obtained through field theory methods,
often built in computer codes. Nevertheless, the qualitative analysis of the problems
remains important.

In 2d (two-dimensional systems), quasiparticles can be not only Bosons or Fermi-
ons, but, more generally, Anyons. These are quasi- particles that are possible only in
2d. An exchange P12 of Anyons 1 and 2 multiplies the wave function of the system
by some phase factor different from ±1. Indeed, a double exchange P2

12 is equiva-
lent to a round trip of particle 1 around particle 2, which leaves the system in the
same state. The same state means the same wave function, up to an arbitrary phase
factor. We may write P12 = eiφ with real φ. In 3d, one can deform any close path
continuously to a point, and this implies that φ = 0 � P2

12 = 1 � P12 = ±1. The
only possibilities are Bosons and Fermions, as we know. In 2d, however, one cannot
reduce the path to a point without crossing particle 2. Therefore, any φ is possible.

One can obtain a semi-classical mental picture of an anyon as a spinless particle
with charge q orbiting around a thin solenoid at distance r. If the current in the solenoid
vanishes (i = 0), then Lz is an integer. Now turn on the current i. The particle feels
an electric field such that

∫
rotE.nd2r = − ∂

∂t

∫
B.nd2r = −∂φ

∂t
,

where φ is the flux within the orbit. The e.m.f. is E = − ∂φ

∂t
2πr and is directed in a

plane, orthogonal to the radius. The electric field changes the angular momentum.

The intensity of the torque is r E = ∂φ

∂t
2π = L̇ z . Thus, the angular momentum is

modified by ΔLz = − q
2π Δφ.

In a more accurate description, the charge is being switched on with the flux,
and the two are proportional. This leads to ΔLz = − q

4π Δφ. The idea behind such
formulations is that a time-dependent flux has a chirality and can impart angular
momentum; the presence of the flux can be accepted since the anyon is actually a
composite quasi-particle object.
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Anyons do exist. They are excitations that form at very low temperatures in the
electron liquid when a thin semiconductor layer is sandwiched between AlGaAs
layers in strong magnetic field; they carry fractional units of magnetic flux in the
fractional quantum Hall effect. Two anyons cannot occupy the same quantum state,
but several of them can form time-dependent braids, in which the anyons enter with
several possible topologies. The different braids contain information. It has been
suggested by Alexei Kitaev in 1997 that the topological properties should be robust
against the perturbations that produce decoherence (see Sect. 9.5.1), and therefore
it should be possible to build logical gates and a quantum computer operating with
anyons. Research on the topological quantum computer is ongoing.

http://dx.doi.org/10.1007/978-3-319-71330-4_9


Chapter 20
Perturbation Theory

Qualitative and approximate methods are very important, since
they allow us to understand trends. The simple techniques in this
chapter help one’s physical intuition very much.

20.1 Time-Independent Rayleigh–Schrödinger
Perturbation Theory

Suppose we can find the bound states of some Hamiltonian H0 by solving exactly
the time-independent Schrödinger equation H0ψ

(0)
n = E (0)

n ψ(0)
n . We calculate the

discrete energy levels {E (0)
1 , E (0)

2 , E (0)
3 , . . .} and find agreement with experiment.

Invariably then, we wish to see what happens when we perturb the system by what
we physically feel is a weak perturbation V̂ . In most cases, we discover that we are
unable to solve

(H0 + V̂ )ψ(0)
n = E (0)

n ψ(0)
n , (20.1)

or perhaps we can solve, but the solution is too involved to make sense of, but if the
perturbation is weak, En differing little from E (0)

n , the changes are small compared to
the gap between different unperturbed eigenvalues. Then, perturbation theory offers
a simple approximate solution that is satisfactory for many purposes and allows us
to grasp trends and make predictions. The idea is that of expanding in powers of the
perturbation. To this end, we need to rewrite the perturbation in the form λV̂ , where
λ is a dimensionless parameter that eventually becomes 1 but serves to keep track
of the powers in the various terms of the expansion; eigenvalues and eigenvectors
become series in λ, and the powers of λ become the perturbation order. In practice,
nobody goes beyond second-order or third-order.With increasing order, the approach
quickly becomes unwieldy, and one must look for a different route. Besides, in some
important problems, the approach fails, and then it emerges that the solution is not
an analytical function of λ, so the perturbation series is a bad start. If the spectrum

© Springer International Publishing AG, part of Springer Nature 2018
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is continuous, the perturbation is never small, and one must resort to the field theory
approaches which are a smarter form of perturbation theory taken to infinite order.
On the other hand, the present approach can be useful in one-body and many-body
problems, with or without spin, with Fermions or Bosons.

We expand the perturbed wave function of the level n over the unperturbed basis
{ψ(0)}:

ψn =
∑

m

cn,mψ(0)
m ;

obviously, for λ → 0, cn,m → δmn , and En → E (0)
n ; this is 0th order. In general,

cn,m may be thought of as what would be if V̂ produced virtual transitions from
unperturbed level n to level m. Then, from (20.1),

∑

m

cn,m

(
E0

m + λV̂
)

ψ(0)
m = E

∑

m

cn,mψ(0)
m .

Multiplying by ψ0∗
k and integrating, we obtain the exact formal restatement of the

problem:
(En − E (0)

k )cn,k = λ
∑

m

Vkmcn,m . (20.2)

Equation (20.1) is rewritten as a discrete infinite system that we are going to solve
by successive approximations.

20.1.1 Discrete Non-degenerate Spectrum

In this case (different {E (0)
n } for different n), the weak perturbation changes the levels

so little (compared to the level separation) that one can tell, for each perturbed energy,
the unperturbed one fromwhich it is derived. Then, we look for the solution of (20.2)
in the form of a series expansion that starts from ψ(0)

n for λV̂ → 0, assuming a series
expansion in powers of λ,

ψn = ψ(0)
n + λψ(1)

n + λ(2)ψ(2)
n + . . . .

Therefore, we set

cn,k = c(0)
n,k + λc(1)

n,k + λ(2)c(2)
n,k + . . .

E = E (0)
n + λE (1)

n + λ(2)E (2)
n + . . . ,

with c(0)
n,k = δk,n . Then, (20.2) becomes
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(E (0)
n − E (0)

k + λE (1)
n + λ2E (2)

n + . . .)(δk,n + λc(1)
n,k + λ2c(2)

n,k + . . .) =
λ

∑
m Vkm(δm,n + λc(1)

n,m + λ2c(2)
n,m + . . .).

(20.3)

We multiply, then we separate the powers of λ:

[E (0)
n − E (0)

k ]δk,n +λ[E (1)
n δk,n + c(1)

k (E (0)
n − E (0)

k )]
+λ2[E (2)

n δk,n + c(2)
k (E (0)

n − E (0)
k ) + c(1)

k E (0)
n ] + . . .

= λ
∑

m Vkmδm,n + λ2 ∑
m Vkmc(1)

m + . . . .

(20.4)

At order 0, we get the trivial result (E (0)
n − E (0)

k )δk,n = 0. At first order, however,

(E (0)
n − E (0)

k )c(1)
k︸ ︷︷ ︸+ E (1)

n δk,n︸ ︷︷ ︸ =
∑

m

Vk,mδm,n = Vk,n.

For k = n, the first curly bracket vanishes, and one finds

E (1)
n = Vn,n . (20.5)

For k �= n, the second curly bracket vanishes, and one finds the amplitudes of the
virtual excitations n � k

c(1)
n,k = Vk,n

E (0)
n − E (0)

k

, k �= n,

and the first-order correction to ψ(0)
n is found to be

ψ(1)
n =

∑

k �=n

Vk,n

E (0)
n − E (0)

k

ψ(0)
k . (20.6)

The correction cannot blow up since the spectrum is discrete. Since we need
< ψ(1)|ψ(0) >= 0 in order to ensure that 〈ψ|ψ〉 = 1 + O(λ2), that is, ψ(1) is
correctly normalized (the error is at second order). It follows that c(1)

n,n = 0.

From (20.6), it is clear that the first approximation is good if Vk,n

E (0)
n −E (0)

k

� 1.

In second order, (20.4) yields

(E (0)
n − E (0)

k )c(2)
n,k︸ ︷︷ ︸

+ E (1)
n c(1)

n,k + E (2)
n δk,n︸ ︷︷ ︸

=
∑

m

Vk,mc(1)
n,m .

For k = n, the second curly bracket survives; since c(1)
n,n = 0; the second-order

correction to the energy reads as:

E (2)
n =

∑

m

Vn,mc(1)
nm =

∑

m �=n

|Vn,m |2
E (0)

n − E (0)
m

. (20.7)
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This is always negative for the ground state.

Problem 34 Show that the energy of the H atom in the ground state plunged into a
weak uniform electric field E is E = E0 + 1

2αE
2 and show the order of magnitude

of the polarizability α.

Solution 34 The effect on the ground state of the perturbation V̂ = ezE is quadratic,
since the operator is odd and 〈ψ0|V̂ |ψ0〉 = 0. The correction to the energy arises in
second order. The polarizability has the dimensions of a volume and is about a3

0 . The
experimental value is, α = 0.66 10−24 cm3.

Problem 35 The oscillator with Hamiltonian

H0 = p2

2m
+ 1

2
mω2x2

is perturbed by
H ′ = bx + c.

Find the correction to the ground state energy by perturbation theory up to the second
order in the case b = −mω2a with c = 1

2mω2a2. Since this case corresponds to a
shift x → x − a, one can compare the perturbation theory approximation with the
exact result.

Solution 35 Recall that x̂ = x0(a+a†)√
2

, p̂ = −i� (a−a†)

x0
√
2
, where x0 =

√
�

mω
, [a, a†] =

1. In first order, the average yields c, and in second order, E (2) = − b2(x01)2

�ω
=

− b2

�ω

x2
0
2 = − 1

2
b2

mω2 . The correction up to second order gives

c − 1

2

b2

mω2
= 0.

This is exact, since the effect of H ′ is x → x − a. All the higher terms of the
perturbation series sum up to 0.

Problem 36 For the anharmonic oscillator with Hamiltonian

Ĥ =
(

n̂ + 1

2

)
�ω + α

(
x

x0

)4

,

calculate the effect of the perturbation on the ground state in first and second order.
When can we say that the second order is small compared to the first?

Solution 36 Recall that x̂ = (x0(a + a†))/
√
2, p̂ = −i�((a − a†))/(x0

√
2), where

x0 =
√

�

mω
, [a, a†] = 1. The first-order correction is E1 = α[( x

x0
)4]0,0. The nonzero

matrix elements (16.28) of x are xn+1,n = xn,n+1 = C
√

n + 1, with C = x0√
2
. Acting

on x , from |0〉, one arrives at |1〉, and so

http://dx.doi.org/10.1007/978-3-319-71330-4_16


20.1 Time-Independent Rayleigh–Schrödinger Perturbation Theory 313

(x4)0,0 = x0,1(x2)1,1x1,0.

Therefore,
(x2)1,1 = x1,0x0,1 + x1,2x2,1.

So,
(x4)0,0 = x0,1[x1,0x0,1 + x1,2x2,1]x1,0 = 3C4,

and the first-order correction is E1 = 3
4α.

In working out (20.7), the states with m > 4 play no role. Since by parity,
(x4)0,1 = 0 = (x4)0,3,

(x4)0,2 = x0,1(x3)1,2 = x0,1[x1,2(x2)2,2 + x1,0(x2)0,2]
= x0,1x1,2(x2,1x1,2 + x2,3x3,2) + x0,1x1,0x0,1x1,2
= (

√
2(2 + 3) + √

2)C4 = 6
√
2C4

and
(x4)0,4 = x0,1x1,2x2,3x3,4 = √

24C4.

The second order contribution is:

−E (2)
0 = α2

x8
0�ω

{ |x4
02|2
2

+ |x4
04|2
4

}
= α2C8

x8
0�ω

{
|6√2|2

2
+ |√24|2

4

}
.

The final result is

E0 ≈ 1

2
�ω + 3

4
α − 21α2

8�ω
,

and the second order is small if α � �ω.

Problem 37 For an anharmonic oscillator with Hamiltonian Ĥ = (n̂ + 1
2 )�ω +

α( x
x0

)3, calculate the correction to the energy of the state n in first and second order.
Perturbation theory, however, cannot be sound. Why?

Solution 37

En =
(

n + 1

2

)
�ω − 15α2

�ω

(
n2 + n + 11

30

)
.

However, the perturbed potential has no minimum and true discrete levels cannot
exist.

Problem 38 A particle in the one-dimensional well 0 < x < L is perturbed by the
small potential V (x) = V0 cos( πx

L )θ( L
2 − x). Calculate the first-order correction to

the levels n = 1 and n = 2.
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Solution 38 Using ψn(x) =
√

2
L sin( nπx

L ), we obtain

E ′
n = 2V0

L

∫ L
2

0 dx sin( nπx
L )2 cos( πx

L ) = 2V0
π

∫ π
2
0 dt sin(nt)2 cos(t). For n = 1, E ′

1 =
2V0
3π , and for n = 2, E ′

2 = 8V0
π

∫ π
2
0 d(t) sin(t)2 cos3(t). Integrating in d sin(t), one

finds = 8 V0
π

∫ 1
0 dx(x2 − x4) = 16V0

15π .

20.1.2 Degenerate Levels

Let the eigenvalue E (0)
n be g times degenerate; let

{ψ(0)
ν }, ν = 1, . . . , g

denote an orthogonal basis for the subspace of degenerate eigenfunctions. At order
0, Eq. (20.2) reduces to (E (0)

n − E (0)
k )ck = 0. Hence, c(0)

k = 0 for E (0)
n �= E (0)

k . A per-
turbation V̂ small compared to the energy separation from the other levels produces a
weakmixing with the corresponding eigenfunctions; yet, in the E (0)

n subspace, it may
have strong effects. The consequences are particularly significant if the degeneracy
is (totally or partially) removed.

First Order

Therefore, to calculate the first-order corrections E1
n , we ignore the mixing with the

eigenfunctions outside the subspace. In the subspace,

Hμ,ν = E (0)
n δμ,ν + Vμ,ν, μ, ν = 1 . . . g;

we have to diagonalize V̂ . Letting E = E0
n + E1

n ,wemust solve the secular equation

E1
ncμ =

∑

ν

Vμ,νcν . (20.8)

The eigenvectors are the eigenfunctions of the 0th approximation, which are linear
combinations of the unperturbed ψ(0)

ν .

Second Order

The other levels are relevant to the second and higher approximations. Usually, this
is important when the degeneracy is not resolved in the first approximation.

In such cases, to find the correction E (2), one starts from

(E − E (0)
n )cμ = E (2)cμ =

∑

m

Vμmcm
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and determines the amplitude of the state m outside the degenerate level n by (En −
Em)cm = ∑

ν Vmνcν, which is accurate to the first order. Substituting,

E (2)cμ =
∑

m

Vμm

Eμ − Em

∑

ν

Vmνcν .

Therefore, the second-order correction is given by condition:

det

∣∣∣∣
∑

m

VmμVνm

Eμ − Em
− E2δμν

∣∣∣∣ = 0. (20.9)

The change with respect to the previous case is Vμν → ∑
m

VmμVνm

Eμ−Em
.

Problem 39 Recall (from Sect. 13.5) that for the plane rigid rotor, with momentum

of inertia I and Hamiltonian H = L̂2
z

2I , the eigenfunctions are ψk(φ) = eikφ√
2π

with

eigenvalues k = 0, and k = ±m�, m = 1, 2, . . .. The energy eigenvalues Ek = �
2 k2

2I
are degenerate, except k = 0. Find the effect of the directional perturbation

V̂ = 2πλ δ(φ − φ0),

where λ,φ0 are constants.

Solution 39 The ground level k = 0 gets shifted at first order in λ. For the excited
states,

〈φm |V |φm〉 = λ

∫ 2π

0
dφe−imφδ(φ − φ0)e

imφ = λ

〈φ−m |V |φm〉 = λ

∫ 2π

0
dφeimφδ(φ − φ0)e

imφ = λe2imφ0 ,

and the perturbation mixes the functions i ψ−m,ψm, m > 0. The matrix reads as:

V =
[

λ λe2imφ0

λe−2imφ0 λ

]
.

The eigenvalues give the first-order corrections.

The eigenvalue E1 = 0 corresponds to the eigenvector 1√
2

(−eimφ0

e−imφ0

)
of V , which

is

ψ− = −eimφ0

√
2

φ−m + e−imφ0

√
2

φm = i
sin [m(φ − φ0)]√

π

and is not affected by the perturbation. The eigenvalue E1 = 2λ corresponds to the

eigenvector 1√
2

(
eimφ0

e−imφ0

)
, that is, to ψ+ = cos[m(φ−φ0)]√

π
.

http://dx.doi.org/10.1007/978-3-319-71330-4_13
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Problem 40 Explain the Stark–Lo Surdo effect for the H atom with n = 2 (the H
atom plunged in an electric field E).
Solution 40 The perturbation

V = ezE

acts in first order (linear Stark–Lo Surdo effect). The wave functions ψnlm =
RnlYlm(θ,φ) involved are:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ200 R20(r) = 2( 1
2a0

)
3
2 (1 − r

2a0
)e− r

2a0 Y00 = 1√
4π

,

ψ210 R21(r) = 1√
3
( 1
2a0

)
3
2

r
a0

e− r
2a0 Y10 =

√
3
4π cos(θ),

ψ211 R21(r) = 1√
3
( 1
2a0

)
3
2

r
a0

e− r
2a0 Y11 = −

√
3
8π sin(θ)eiφ,

ψ21−1 R21(r) = 1√
3
( 1
2a0

)
3
2

r
a0

e− r
2a0 Y1−1 = −

√
3
8π sin(θ)e−iφ.

We need the matrix of the perturbation on this basis. Since V is odd, the diagonal
elements vanish, and since V does not depend on φ, the matrix elements between
functions with different m also vanish. ψ200 gets mixed with ψ210, and effectively
the matrix that we must diagonalize is 2 × 2. Using cos(θ) = z

r , one finds

〈ψ200|V |ψ210〉 = 3ea0E

and {
E (1)

− = 3ea0E ψ200−ψ210√
2

E (1)
+ = −3ea0E ψ200+ψ210√

2

.

The degenerate level splits into 3.

20.2 Time-Dependent Perturbations

Transitions betweenquantumstates occur under the influenceof some time-dependent
external perturbation V̂ (t). This is what one normally does to study a system. In order
to test the properties of a molecule or a superconductor, one uses a probe like a weak
field that produces excitations, but still allows us to classify the states in terms of
the stationary states of the unperturbed system, while allowing transitions between
them. The present section is therefore fundamental for all spectroscopies. We wish
to solve

i�
∂ψ

∂t
=

[
H0 + V̂ (t)

]
ψ (20.10)

in terms of the full orthonormal set of solutions of the unperturbed problem
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i�
∂φn

∂t
= H0φn(t);

evolving according to

φn(t) = φn(0) exp

(−iεnt

�

)
.

Let us suppose that the system described by H0 is prepared in the eigenstate φn, but
under the action of the weak perturbation V̂ (t), it makes a transition to other unper-
turbed states. First, let us expand1 on the unperturbed basis withψ = ∑

k ak(t)φk(t);
substituting into (20.10), we find

i�
∑

k

ȧk(t)φk(t) =
∑

k

ak(t)V̂ φk(t).

Scalar multiplication by φm(t) gives us

i�ȧm =
∑

k

Vmk(t)ak(t), (20.11)

where
Vmk(t) = 〈φm(t)|V̂ (t)|φk(t)〉 = 〈φm(0)|V̂ (t)|φk(0)〉eiωmk t ,

�ωmk = εm − εk . (20.12)

Note the double time-dependence of Vmk(t) via the operator and the phase factor.
From the initial conditions

ψ(0) = φn(0) =⇒ ak(0) = δkn, (20.13)

we can write an exact formal solution, in the presence of V̂ and obtain the transition
amplitude to any final state m. For clarity,

we shall denote the amplitude to go to m by an→m .

In view of (20.12), ifωkn > 0, the system is promoted to a higher levelm, while for
ωmn < 0, we speak of a decay to a lower level. The system energy is not conserved,
since H is time-dependent.

So far we have made no approximations, but usually the exact solution is pro-
hibitively difficult or expensive. Now we introduce the assumption that the pertur-
bation is so weak, that the probability of exciting the system are small. In this case,

1P.A.M. Dirac, 1926.
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we feel licensed not only to use perturbation theory, but even to stop after one step,
or first approximation. Simply, we put into the r.h.s. of (20.11) the initial condition
(20.13) ψ(t) ∼ φn(t), or, in other words, ak(0) ∼ δkn. So,

i�
d

dt
an→m(t) = Vmn(t),

which is solved by

an→m(t) = − i

�

∫ tmax

tmin

Vmn(τ )dτ . (20.14)

The integration limits tmin, tmax depend on the problem. For instance, if V̂ is switched
on at time 0 and off at a later time T , we write

∫ T
0 , and so on.

Problem 41 A particle is confined between x = 0 and x = a in a deep one-
dimensional well. At time t = 0, it is in the ground state.

a. Calculate the first-order transition probability Pm to the m-th excited state under
the action of a potential V (t) = λδ(x − a

2 )θ(t)θ(T − t).
b. State the validity criterion of the approximation.
c. Find T such that the transition probability to the second excited level m = 3 is

maximum.

Solution 41 Using the eigenfunctions (11.3) ψn(x) =
√

2
a sin

[
nπ x

a

]
, one finds

Vm1(t) = 2λ

a

∫
dx sin

(mπx

a

)
sin

(πx

a

)
δ
(

x − a

2

)
eiωm1τ ,

with

ωm1 = �π2(m2 − 1)

2ma2
.

Thus, Pm = | 2λ
�a sin(mπ/2)

∫ T
0 eiωm1τ dτ |2. Moreover, Pm � 1.

Since | ∫ T
0 eiωm1τ dτ |2 = 21−cos(ωm1T )

ω2
m1

, the condition is cos(ω31T ) = −1, which

implies that ω31T = π, 3π, 5π, . . .

Problem 42 A harmonic oscillator is in the ground state at time t = 0. Calculate the
probability of transition to level n at time T under the action of the weak perturbation
V (t) = (a + a†)V0T δ(T − t).

Solution 42 It is only possible to jump to n = 1. The probability is | V0T
�

|2.

http://dx.doi.org/10.1007/978-3-319-71330-4_11
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20.2.1 Periodic Perturbations and Fermi Golden Rule

The interaction of charges with a monochromatic electromagnetic wave is most
often well described by in lowest-order perturbation theory, unless one wants to
study nonlinear optics by means of intense laser radiation. In most cases, one intro-
duces the minimal coupling rule (2.94), neglecting the

−→
A 2 term on the grounds that

it is quadratic. Then setting A(t) = A0eiωt + A∗
0e−iωt , one considers a periodic

perturbation
V̂ (t) = Ŵ eiωt + Ŵ †e−iωt , ω > 0. (20.15)

where Ŵ = −→
A 0 · −→p . We shall see that the first terms produces emission and the

second absorption of a photon. Since the integrand is periodic, we use (20.14) with
integration limits −∞,∞. Working out

an→m(t) = − iWmn

�

∫ ∞

−∞

[
ei(ωmn+ω)τ + ei(ωmn−ω)τ

]
dτ ,

using
∫ ∞
−∞ eimx = 2πδ(x), we get

an→m ≡ am(t → ∞)
?
= − iWmn

�
2π [δ (ωmn + ω) + δ (ωmn − ω)] .

Ifωmn < 0 (emission), only thefirst termcontributes, ifωmn > 0 (absorption) only the
second. In thisway, one obtains delta-like lineswith the resonance condition±ωmn =
ω for absorption and emission. Is this OK? No! This is a transition amplitude, and
in order to find the probability Pn→m = a∗

n→man→m, we must square; alas, δ(x)2 is
a mathematical nonsense. We made a mistake, but where?

Actually, it is not a mathematical error, but an oversimplified scheme. A perfectly
monochromatic excitation should last for a time T → ∞ and cannot exist. Often in
Physics problems, one avoids trouble by introducing a cutoff, that is, by replacing
zero with a small quantity and infinity with a large one. Even here, we get out of
trouble if we introduce the duration T of the excitation. For the absorption of a wave
that lasts a time T , we find

an→m(t) = − iWmn

�

∫ T

0
ei(ωmn−ω)τ dτ .

and so

Pn→m = iW ∗
mn

�

∫ T

0
e−i(ωmn−ω)τ1 dτ1 ×

(
− iWmn

�

) ∫ T

0
ei(ωmn−ω)τ2dτ2.

Since
∫ T
0 eixτ dτ = eixT −1

i x , now the lines have some width ∼ 1
T . The problem of the

squared delta is solved. Then, we can decide to neglect the finite width and simplify

http://dx.doi.org/10.1007/978-3-319-71330-4_2
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the result by approximating one of the integrals with
∫ T
0 ∼ ∫ ∞

−∞ = 2πδ (ωmn − ω);
then, the other integral equals T . In this way,

Pn→m =
∣∣∣∣
Wmn

�

∣∣∣∣
2

T × 2πδ (ωmn − ω) .

This probability grows linearlywith the duration T of the experiment.With increasing
T , one first violates the condition P � 1 which is needed for first-order perturbation
theory, and eventually one finds P > 1 which makes no sense. One solution would
be: evaluate a realistic duration T and plug it into the formula. Actually, one can
avoid this step, by defining the transition rate

Rn→m = ∂Pn→m

∂T

which is the actually measured quantity. In this way, one arrives at the Fermi golden
rule:

Rn→m = 1

�
|Wmn|2 2πδ (εm − εn − �ω) . (20.16)

Problem 43 Let H0 = εσz; V̂ = λ(eiωt + e−iωt )σx , with ψ(0) = (
0
1
); calculate

the rate R.

Solution 43 R = 2πλ2

�
δ(2ε − �ω).

Selection Rules for the H Atom

The H atom can absorb a photon and promote the electron to a higher level; when
excited, it emits a photon while the electron jumps down to a lower level. The
transition rate can be obtained in the dipole approximation assuming a uniform
electric field; this is good in the visible or near ultraviolet, since the wave length is
on the order of hundreds of nanometers and is large compared to the Bohr radius. To
find the transition rate, one computes the matrix elements of −→r = (x, y, z) between
the initial and final wave functions. The transition occurs if at least one between

Ax = 〈ψn′l ′m ′ |x |ψnlm〉, Ay = 〈ψn′l ′m ′ |y|ψnlm〉, Az = 〈ψn′l ′m ′ |z|ψnlm〉,

does not vanish. Since the dipole is odd, this requires that the initial and final wave
functions have opposite parity. Since the parity of the harmonic Ylm(θ,φ) is (−1)l ,
this requires that l e l ′ have opposite parity (Laporte’s rule).

Besides the parity, the total angular momentum (including the photon) is con-
served. This leads to the rules

m ′ = m or m ′ = m ± 1, l ′ = l ± 1. (20.17)

These rules forbid the transitions for which the matrix element vanishes. Indeed,
up to a constant, z ∼ Y10(θ,φ), (x ± iy) ∼ Y1±1(θ,φ). Thus the angular factor in
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the matrix element reads as

∫
dΩY ∗

l ′m ′(θ,φ)Y1q(θ,φ)Ylm(θ,φ) =
√

3

4π

2l + 1

2l ′ + 1
〈l100|l ′0〉〈l1mq|l ′m ′〉,

and the forbidden transitions depend on vanishing Clebsh–Gordan coefficients. The
result shows that the Photon spin is 1.



Chapter 21
Variational Principle for Schrödinger–Pauli
Theory

Variational principles are ubiquitous in Theoretical Physics and
are very useful mathematical tools. This one depends on the
existence of a ground state.

21.1 The Ground State and the Absolute Minimum
of Energy

The Schrödinger–Pauli theory is characterized by the fact that every system must
have a ground state, whose energy is a lower bound to the energies of all states. This
is not true in Classical Mechanics, in which, for instance, a H atom could have any
energy.

Let φ denote any wave function of an arbitrary quantum system, with one or
several particles, duly normalized with

N =< φ|φ >= 1. (21.1)

The expectation value of the energy

E =< φ|H |φ > (21.2)

cannot be lower than the energy ε0 of the ground state. To see that, let us expand φ
in eigenvectors ψn of H :

|φ〉 =
∑

n

|ψn〉〈ψn|φ〉.

Since εn ≥ ε0,

E =
∑

n

|〈ψn|φ〉|2εn ≥ ε0. (21.3)
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So, the ground state can be sought by looking for the energy minimum. We can get
close to the real ground state if we start from a correct qualitative idea of the form
of the ground wave function. To explore this possibility, let us consider a familiar
case, namely, the ground state of the harmonic oscillator (H = p2

2m + 1
2mω2x2). We

can pick the exact solution among the normalized trial functions, depending on the
unknown parameter b,

φ(x) = Ae−bx2 , A =
(
2b

π

)1/4

.

We use the familiar integrals
∫ ∞
∞ dx exp

[−αx2
] = √

π
α
,

∫ ∞
∞ dxx2 exp

[−αx2
] =

1
2

√
π
α3 . Using 〈φ|x2|φ〉 = 1

4b , 〈φ| d2

dx2 |φ〉 = 〈φ|(−2b + 4b2x2)|φ〉 = −b, one finds
that

E = �
2b

2m
+ mω2

8b
.

The first term is kinetic energy and the second is potential energy. E(b) has one
minimum. dE

db = �
2

2m − mω2

8b2 = 0 yields b = mω
2�

, E = �ω/2. In this way, one arrives
at the exact solution, since the solution was one of the trial functions.

The energy (21.2) is a quadratic functional1 of φ. Let us see the effect on E of a
variation of φ; the variation must be infinitesimal but otherwise arbitrary. We shall
denote the variation as φ → φ + αη, where η is an arbitrary complex function of
the same variables as φ,while α → 0 is a complex parameter with arbitrary phase.
The variation of energy E =< φ|H |φ >, which follows from φ → φ + αη, in first
order in α, is therefore

δE = α∗ < η|H |φ > +α < φ|H |η > +O(α2),

where O(α2) is negligible. The condition for a stationary E is

E is stationay ⇐⇒ {δE = 0, arbitrary η}. (21.4)

The condition (21.4) is too strong to be interesting, since we cannot accept the
variations of φ that violate the normalization condition. The variation changes the
norm by

δN = α∗ < η|φ > +α < φ|η > +O(α2).

Therefore, the extremum must be conditioned. Using the Lagrange method we write

δ(E − λN ) = 0.

1A functional of φ is an integral that has φ in the integrand; it can be considered as a function of
infinitely many variables, which are the values taken by φ in the field of integration. This one is
quadratic, since φ appears in bra and ket.
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Note that this condition is obtained from the unconstrained minimum condition
δE = δ〈φ|H |φ〉 = 0 by the substitution H → H − λ. In this way, |φ > depends on
the multiplier λ, which is fixed eventually by setting N =< φ(λ)|φ(λ) >= 1.

We obtain the same result more simply if we vary only the bra, that is. redefine
δE and δN as

δE = α∗ < η|H |φ >, δN = α∗ < η|φ > . (21.5)

By the Lagrange method, we obtain the constrained minimum condition

α∗ < η|H − λ|φ >= 0.

Since η is arbitrary, it follows that

(H − λ)|φ >= 0.

Thus, the condition coincides with the stationary state equation and λ coincides with
the eigenvalue E . In summary,

{Hφ = Eφ, < φ|φ >= 1} ⇔ {δ(E − λN ) = 0,λ = E} ⇔ {δ(E) = 0, N = 1}.

The extremum condition is another way to state the stationary state Schrödinger
equation. It holds for all the eigenstates, and the Lagrange multiplier is the energy
eigenvalue.

Example

Consider the Hamiltonian matrix

H =

⎛

⎜⎜⎜⎜⎝

−3 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

⎞

⎟⎟⎟⎟⎠
.

Use the variational method to find the eigenvectors of the following form:

ψ =

⎛

⎜⎜⎜⎜⎝

α
β
β
β
β

⎞

⎟⎟⎟⎟⎠
.

The normalization requires N = 〈ψ|ψ〉 = α2 + 4β2 = 1; the energy is E =
〈ψ|H |ψ〉 = 8αβ − 3α2: the principle requires that we extremize f (α,β) = E −
λN . One finds:
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{
∂ f
∂α

= 0 =⇒ 4β = (3 + λ)α
∂ f
∂β

= 0 =⇒ α = λβ.

The condition λ(3 + λ) = 4, gives the roots λ = −4, λ = 1. For λ = −4 from
α = −4β, we get

ψ−4 = 1√
20

⎛

⎜⎜⎜⎜⎝

−4
1
1
1
1

⎞

⎟⎟⎟⎟⎠
,

which is the exact ground state with eigenvalue ε = −4.

For λ = 1, α = β gives us ψ1 = 1√
5

⎛

⎜⎜⎜⎜⎝

1
1
1
1
1

⎞

⎟⎟⎟⎟⎠
, which is the exact excited state with

eigenvalue ε = 1.

21.2 Variational Approximations

The great theoretician Richard Feynman wrote that in order to make progress, a
theoretical physicist must understand a given problem in several different ways.
The variational principle is equivalent to the stationary state Schrödinger equation,
and aside from the mathematical interest, it is a very useful tool, for generating
approximations of otherwise intractable problems. The real power of this method
has been demonstrated by its application to hard many-body problems.

One can invent trial functions φ(x, {λ1,λ2, . . . λn}) that depend on a number of
parameters {λ1,λ2, . . . λn}. Then, the method requires a minimization of the energy
as a function of the parameters. If φ is not already normalized, the normalization
constraint can be imposed via a Lagrange multiplier. If the exact ground φ happens
to be in the class of trial functions, the exact result is gained. Otherwise, it is good
to know that the approximate E is higher than the exact value. The approximation
gets better if we improve or enlarge the class of functions and increase the number of
parameters. Typically, one accurate estimates of E , even with relatively poor φ(x).

Even the excited states correspond to extrema of the functional, but the method
has a limited applicability to them.
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The trouble is that the true eigenstates must be

orthogonal, but this property cannot be granted for

the f that belong to a limited class of functions.

The orthogonality is granted in the LCAO (= linear combination of atomic
orbitals) method for finding the molecular orbitals in a simple independent-particle
scheme, but this is an exception.We cannot dispense fromorthogonality; if an excited
state is not orthogonal to the ground state, we cannot give it any meaning and if we
orthogonalize, the variational principle is not satisfied. In general this method is
not suited to excited states. However, the lowest state of each symmetry type can be
sought through the variationalmethod. For instance, the non-relativistic atomic states
are labelled by L ,m (angular momentum and its z component); states with different
angular momenta are automatically orthogonal. So, if, for instance, the approximate
ground state has L = 0, and the approximate first excited state has L = 1, we can
use the variational principle in this case. Any symmetry works, since by symmetry,
we mean operator X , which is unitary (that is XX† = 1, see Sect. 13.2), such that
[H, X ]− = 0. Eigenstates of an unitary operator X belonging to different eigenvalues
are orthogonal. Indeed, if Xφ1 = eiαφ1 and Xφ2 = eiβφ2,

(φ1,φ2) = (φ1, X
†Xφ2) = ei(β−α)(φ1,φ2),

and, if α �= β, this requires that (φ1,φ2) = 0.

Problem 44 For the quartic anharmonic oscillator of Problem36 find the varia-
tional condition for a trial function φ(x) = Ae−bx2 , A = ( 2b

π
)1/4, using the identity∫ ∞

−∞ dxx4 exp(−αx2) = 3
4

√
π
α5 .

Solution 44 E = �
2b
2m + mω2

8b + 3α
16x40b

2 = minimum.

There is no general method for choosing the trial functions; a proper choice is
important, and that is the really hard initial step of the variational theory. Some solu-
tions are very famous, like the Hartree–Fok method; the theory of superconductivity
by Bardeen, Cooper and Schrieffer was initially formulated in terms of a variational
solution.

21.3 Hartree–Fok Method

The non-relativistic N-electron Hamiltonian for an atom, molecule or solid
H (r1, r2, . . . , rN ) = H0 + V, consists of a free part and an interaction term. The
free part is of the form

http://dx.doi.org/10.1007/978-3-319-71330-4_13
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H0 = T + Hw =
∑

i

h(i) ≡
∑

i

{
−1

2
∇2
i + w(ri )

}
, (21.6)

where w(ri ) is the electrostatic potential of the nuclei acting on electron i . This part,
taken alone, would be relatively easy to solve, in terms of a determinantal state

�(1, 2, . . . N ) = 1√
N !

⎛

⎜⎜⎝

u1(1) u2(1) . . . uN (1)
u1(2) u2(2) . . . uN (2)
. . . . . . . . . . . .

u1(N ) u2(N ) . . . uN (N )

⎞

⎟⎟⎠ (21.7)

written in terms of spin-orbitals ui (i) to be determined. The great complication arises
from the interaction term

V = 1

2

∑

i �= j

e2

|ri − r j | . (21.8)

The Hartree–Fok (HF) Method, or mean field approximation, seeks the best vari-
ational determinantal wave function. Using the rules of Chap. 25, the expectation
value of H is found to be

EN =
N∑

i

Ii + 1

2

N∑

i �= j

[
Ci j − Ei j

]
, (21.9)

where Ii = 〈ui |h(i)|ui 〉 and Ci j , Ei j denote the Coulomb and Exchange integrals.
The first term

Ci j =
∫

d3r1d
3r2

|ui (r1)|2|u j (r2)|2
r12

(21.10)

has a clear electrostatic meaning, and is called the Coulomb term; the second contri-
bution vanishes for anti-parallel spins, and for parallel spins reads as

Ei j =
∫

d3r1d
3r2

u∗
i (r1)u

∗
j (r2)ui (r2)u j (r1)

r12
. (21.11)

Looking for the extremum of energy constrained by normalization, one finds the
Hartree–Fok (HF) equations. We introduce the direct potential

V d =
N∑

i

V d
i (r), V d

i (r) =
∫

dr′ |ui (r′)|2
|r − r′|

summed over all electrons, and the exchange potential

http://dx.doi.org/10.1007/978-3-319-71330-4_25
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V ex =
↑↑∑

i

V ex
i (r), V ex

i (r) f (r) = ui (r)
∫

dr′ ui (r
′)∗ f (r′)

|r − r′| , (21.12)

where the summation
↑↑∑
i
runs over the spin-orbitals with the same spin as i. For an

atom with atomic number Z, the Fok operator

f̂ = p2

2m
− Z

|r| + V d(r) − V ex (r) (21.13)

allows us to write the HF equations in the one-body form

f̂ ui (r) = εi ui (r). (21.14)

This form looks simple, but the problem is highly nonlinear, and the solution is usu-
ally sought numerically by iteration. The HF equations have a complete orthonormal
set of solutions. The lowest N spin-orbitals allow us to build the determinantal wave
functions. The rest are called virtual orbitals; they are not directly related to any
experiment involving excited states, but they are often useful for generating multi-
determinantal developments, like the Configuration Interaction expansion. The pres-
ence of the exchange term is essential in order to explain, for instance, the covalent
bond and the cohesive energy of metals. A conduction electron feels the attraction
of a piece of metal, which is neutral, because of the exchange contribution, which
physically means that in the metal an electron manages to keep the electrons of the
same spin far enough away to produce a sort of Fermi holewhere the positive charge
prevails.

This is just the beginning of the many-body theory. The typical error in the energy
of valence electrons in the HF method is on the order of 1eV, which may be rela-
tively small, compared to the atomic ground state energies, but is comparable to the
ionization potentials and to the energy of a typical chemical bond. In order to pro-
ceed one must go beyond Hartree–Fok. Green’s function methods and many-body
perturbation theories, as well as Density Functional are used for that. In addition,
in the case of heavy elements, the effects of relativity on the inner electrons and
also indirectly on the valence electrons are so strong that one must start with the
relativistic formulation.



Chapter 22
Discrete Models

Many problems are easier to grasp if we can make them
discrete.

22.1 Matrices and Useful Models

In some problems the states that mix in a significant way are few; then, the method
of matrices lends itself to insightful (if qualitative) descriptions. The simplest model
is 2 × 2:

H =
(
Ea V,

V ∗ Eb

)
.

This has many applications: diatomic molecules, etc. For example, if Ea, Eb are
atomic levels and V a mixing term, which may represent a covalent bond, you get a
lower bonding level and an anti-bonding one. This is a model for a molecule such
as H+

2 . This theoretical model is rough, since it accounts for the energy gain of the
electron which is delocalized but ignores interaction and correlation effects; how-
ever, qualitatively it works, while no explanation of the covalent bond is classically
possible. It has been widely used for a rough description of polyatomic molecules,
especially in organic chemistry, and is called LCAO (Linear Combination of Atomic
Orbitals). For its great simplicity and its ability to explain some experimental trends,
has quite a favorable cost-benefit ratio.

As a second example,we consider neutrino oscillations. Theproblemoriginated in
the ‘60’s when it was found that the solar electron neutrinos are definitely fewer than
the expectations based on the energy output. Neutrino oscillations have since been
observed using reactors and accelerator experiments. There are 3 neutrino flavors,
and we denote their spinors by |να〉, with α = 1, 2 and 3, respectively, for electron,
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muon and tauon neutrinos. The Hamiltonian is not diagonal on this basis, but on the
basis |νi 〉 of mass eigenstates, with i= 1, 2, 3. On this basis, H = diag(m1,m2,m3),
where the massesmi are obviously relativistic (the rest masses are a fraction of 1eV,
while the observed energies are several Mev.) The energy eigenstates (also called
mass eigenstates) for the neutrinos νi , i = 1, 2, 3 are related to the flavor eigenstates
by a 3 × 3 unitary matrix called the Pontecorvo, Maki, Nagakawa, Sakada matrix
Uαi . When only two flavors are important, this unitary matrix depends only on one
parameter β and may be written as

U =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

The probability that a particle created at time t = 0 as a flavor α neutrino is
detected at time t by a detector for flavor β is readily found to be P = |〈νβ(t)|να〉|2.
This is a simple, phenomenological, but working, model of neutrino oscillations.

22.2 Gauge Changes in Lattice Models

In order to deal with charged particles on discrete lattices, one must be able to switch
fields andmake gauge changes (Sect. 15.1.5) like in continuous descriptions. Amini-
lattice of two sites, with site energies 0 and ε, is enough to show how this works.
One can introduce an electric field E across a bond in the lattice by introducing a
scalar potential difference between the sites, or alternatively, by introducing a vector
potential. We can introduce the vector potential as follows:

H =
(
0 τ
τ ε

)
→ H(t) =

(
0 τeiωt

τe−iωt ε

)
. (22.1)

Here, ω = 2π
φ0

∫
bond A.dr, φ0 = hc

e is the flux quantum, the vector potential is
A = cEt and the integral extends over the bond. Since the time-dependence is due
to the vector potential, I append a label A to the amplitudes. The electron amplitudes
aA and bA on the two sites are found by solving the time-dependent S.E.; one finds

{
i ȧA = τbA(t)eiωt

i ḃA = εbA(t) + τaA(t)e−iωt .

We can also represent the same field with a scalar potential V producing an energy
shift e�V = �ω of the second site relative to the first. Now, I append a label V to
the amplitudes in this gauge. It turns out that

aV = aA(t) exp

[−iωt

2

]
,

http://dx.doi.org/10.1007/978-3-319-71330-4_15
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bV = bA exp

[
iωt

2

]
.

Differentiating, one finds that these amplitudes obey the S.E.with a time-independent
Hamiltonian. Now the rule (22.1) is replaced by:

H =
(
0 τ
τ ε

)
→ HV =

(
ω
2 τ
τ ε − ω

2

)
.

The change produces a space-dependent and time-dependent phase factor of the
amplitudes, as in the continuous case.

22.3 Flux Quantization

A neat example shows the flux quantisation. The model Hamiltonian

H =
⎛
⎝ 0 τ12 0

τ21 0 τ23
0 τ32 0

⎞
⎠ (22.2)

with τ12 = τ23 = 1 may represent the molecular orbitals of a symmetric triangular
molecule. If we now set τ12 = τ ∗

21 = eiγ with real γ, the complex bond bears a vector
potential, and consequently, themodel is pierced by amagnetic flux. The ground state
energy of themodel is a periodic function of the flux, and the period is a flux quantum
(Fig. 22.1).

Fig. 22.1 The ground state
energy of the triangular
model as a function of γ
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22.4 Infinite Discrete Models and the Local Density
of States

Infinite discrete models can have continuous spectra and model quantum wires,
surfaces or even solids. The infinite chain is a prototype model of an infinite 1d
solid. The sites of the chain are labeled by integers and the Hamiltonian describes
nearest-neighbor hopping.

H |n〉 = τ (|n + 1〉 + |n − 1〉). (22.3)

Expanding the wave functions on the basis of the sites, |ψ〉 = ∑∞
n=−∞ ψn|n〉, one

finds for the eigenstate of energy εq the S.E. H |ψ〉 = ∑∞
n=−∞ ψnH |n〉 = εq |ψ〉,

which leads to the recursion relation εqψn = τ (ψn+1 + ψn−1). This is solved by
εq = 2τ cos(q) and ψn = eiqn . The local density of states (LDOS) defined by

ρ(ω) =
∑
k

|〈0|k〉|2δ(ω − εk) (22.4)

gives the probability of finding the particle at site 0 with energy �ω (but it is the same
on all sites in this model.) ρ(ω) contains much information and allows us to visualize

the continuum. Using the fact that
∑

k = 1
2π

∫ π
a

− π
a
one easily does the integral with

the δ and finds that the density of states vanishes outside the band −2th ≤ ω ≤ 2th ,
and within the band,

ρ(ω) = 1

π
√
4t2h − ω2

. (22.5)

This is shown in Fig. 22.2 left. The divergence at the band edges is topological, i.e.
it is common to all the one-dimensional models. Indeed, the group velocity of the
particle goes to zero there, and so it is likely that the particle is found nearby.

The local density of states is also easily obtained as an integral in two and three
dimensions. In 2 dimensions, one finds that

ρ2(ω) = 1

2π

∫ π

−π

dkρ1(ω − 2th cos(k)). (22.6)

This is shown in Fig. 22.2 center. The band edge singularity has become a finite jump,
while a divergence of the derivative atω = 0 is an example of the so-called Van Hove
singularities. In Solid State Physics, such singularities play a role in the analysis of
the optical absorption spectra. In a similar way, one finds for the 3d case,

ρ3(ω) = 1

2π

∫ π

−π

ρ2(ω − 2th cos(k)). (22.7)
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Fig. 22.2 Density of states of the 1d tight-binding chain (left), square lattice (centre) and cubic
lattice (right). Note the Van Hove singularities at the band edges and, in the 3d case, at ω = ±2

Fig. 22.3 Slices of Bipartite
graphs in d, 2d and 3d

This is shown in Fig. 22.2 right. The band edge singularities at ω = ±ωedge with
ωedge = 6th are of the square root type, and this is typical of three-dimensionality.

The densities of states are all symmetric aroundω = 0.This is readily understood,
since all three lattices are bipartite, that is, they have the property that all sites
can be painted red or blue, with every red site having only blue nearest neighbors
and every blue site having only red nearest neighbors. This implies that a change
th → −th is just a gauge change, equivalent to changing the sign of all the red
sites; no physical observable can be affected. On the other hand the Hamiltonian
changes sign. Therefore, the spectrum is symmetric for ω → −ω, and th → −th
brings an eigenfunction to an eigenfunction corresponding to an opposite eigenvalue
(Fig. 22.3).

22.5 Exactly Solved Non-periodic Infinite Model

The above models are easily solved thanks to the symmetry. A few more models that
can be solved, even for large or infinite systems, are naturally of interest. We shall
find the following simple model very enlightening. Consider the Hamiltonian
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H =

⎛
⎜⎜⎝

ε1 g g · · ·
g ε2 g · · ·
g g ε3 · · ·
· · · · · · · · · · · ·

⎞
⎟⎟⎠ (22.8)

For the moment, we may take it as a model with site energies εn, where the electron
can hop from one site to any other with the same amplitude g. This model can be
solved for any size of the system. Let vn denote the nth component of any eigenvector.
The S.E. gives us ε1v1 + g

∑
j �=1 v j = Ev1, where E is the eigenvalue. Setting S =∑

j v j , we obtain v1 = gS
E+g−ε1

. Since the equation for the n-th component is of the

same form, namely, vn = gS
E+g−εn

, we readily arrive at the eigenvalue equation

1

g
=

∑
n

1

E + g − εn
(22.9)

and the problem is reduced to the solution of a transcendental equation. This solu-
tion is versatile. It will be used In Sect. 25.6.1 to solve the Richardson model of
superconductivity.

22.6 The Current Operator on a Discrete Basis

Consider the following prototype second-quantized model for a quantum wire:

H = th
∑
i

(c†i+1ci + h.c.); (22.10)

the corresponding expression in first quantization would read as

H = th
∑
i

(|i + 1〉〈i | + h.c.)

and would describe the hopping of one electron. Instead, (22.10) is a many-
body Hamiltonian that represents electrons doing the same but obeying the anti-
commutation relations.

The continuum representation of the current density (Eq. (10.20)) cannot apply,
but we can build a new one still based on the continuity equation; the difference is
that now the density of spin σ at site i is represented by

ρ(i,σ) = en̂iσ = c†iσciσ.

The spin index canbeunderstoodwhen it does not play a role. Inwriting the continuity
equation for the current J this discrete model, we may set

http://dx.doi.org/10.1007/978-3-319-71330-4_25
http://dx.doi.org/10.1007/978-3-319-71330-4_10
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d J

dx
→ Jm − Jm−1

and so
∂ρ

∂t
= Jm − Jm−1.

The time derivative is obtained from the Heisenberg equation of motion. In this way
we arrive at the current operator

Jm = eth
i�

(c†m−1cm − c†mcm−1). (22.11)

An expression like Jm = eth
i� (c†mcm+1 − c†m+1cm) is equally correct since it is physi-

cally equivalent. In Chap.25 we shall see applications of this result.

http://dx.doi.org/10.1007/978-3-319-71330-4_25


Chapter 23
Pancharatnam Phase and Berry Phase

Parametric Hamiltonians convey the indirect influence of the
rest of the Universe on the system under study, and this influence
is somewhat similar to a special magnetic field in abstract
parameter space.

23.1 Pancharatnam Phase

The Indian physicist S. Pancharatnam, working in quantum Optics in 1956, intro-
duced1 the novel concept of a geometrical phase. Let H(ξ) denote a Hamiltonian
that depends on some parameters ξ, with ground state |ψ(ξ)〉. One can define a phase
difference Δϕ12 between two ground states |ψ(ξ1)〉 and |ψ(ξ2)〉:

〈ψ(ξ1)|ψ(ξ2)〉 = |〈ψ(ξ1)|ψ(ξ2)〉|e−iΔϕ12 .

(Of course,we are assuming that the two ground states are not orthogonal.) This result
cannot have a physical meaning, since the phase of any quantum wave function is
arbitrary and, for a charged particle, depends on the choice of a gauge. Next, consider
3 points ξ in parameter space and calculate the total phase γ in ξ1 → ξ2 → ξ3 → ξ1.
Now,

γ = Δϕ12 + Δϕ23 + Δϕ31.

The phase of each ψ can be changed at will by a gauge transformation, but strik-
ingly, all these arbitrary changes cancel in the calculation of γ. Actually, γ is gauge
independent! This result holds in any closed circuit defined by more than 2 points.
Now there is no excuse for declaring γ a physically irrelevant quantity. It can
be an observable. Some observables are not eigenvalues of Hermitean operators.

1S. Pancharatnam, Proc. Indian Acad. Sci. A 44, 247 (1956).
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They originate in a subtle way from the parameters in the Hamiltonian that stand for
the influence of the external world.

For example, |ψa〉, |ψb〉, |ψc〉 could be ground states for an electron in the sites a,
b, c of a discrete model, representing a molecule; H has matrix elements connecting
them. Let τab be the matrix element connecting sites a and b, which allows electron
hopping. This is just the LCAO model of a molecule (see Sect. 22.1).

Following a prescription by R. Peierls, we can switch on a vector potential
−→
A

with
τab → τabe

2πi
φ0

∫ b
a d−→r ·−→A

, (23.1)

where φ0 = hc
e = 4 × 10−7Gauss cm2 is the flux quantum or fluxon. In the case of

a biatomic molecule like H2, this change has no consequences, but with 3 or more
atoms, the physical meaning is that a magnetic flux φ pierces the molecule. Changing
φmodifies all the energy levels, except that changing φ by a fluxon is a gauge change
(see Chap.22).

23.2 Berry Phase

Consider the case when the Hamiltonian depends on two or more parameters, and
consider a number N of states obtained by letting the parameters form a closed ring.
What does the Pancharatnam phase become in the limit of a continuous change of
the parameters over a continuum of states? To answer this question, consider a large
number N of states in two or more dimensions, forming a finely spaced necklace
(Fig. 23.1). If the wave functions are computed on the same footing, their phases will

Fig. 23.1 Necklace of states in two-dimensional parameter space

http://dx.doi.org/10.1007/978-3-319-71330-4_22
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also behave smoothly in going from 1 to 2; ψ denotes the wave function at 1, and
we expect to find in 2 the function (ψ + δψ)e−iδφ12 , where φ12 is the phase change.
Thus,

〈ψ1|ψ2〉 = 〈ψ|ψ + δψ〉eiδφ12 ,

and since the first-order change δψ must be orthogonal to ψ, 〈ψ1|ψ2〉 ∼ e−iφ12 ∼
1 − iδφ12.

On the other hand, to first order, ψ2 = ψ1 + ∇ψ.dr. Therefore, we conclude that
δφ12 = i〈ψ|∇ψ〉. In the continuum limit, we find that

φ = i
∮

〈ψ|∇ψ〉dR (23.2)

is the phase collected between 1 andN; this may be labeled with the quantum number
of the states under consideration. Evidently, the so-called Berry connection

An = 〈ψn|∇ψn〉 (23.3)

is a sort of vector potential; rotAn = Bn is a would-be magnetic field, which takes
the name of a curvature; some curvature must create a flux through the yellow region
of Fig. 23.1 if the Berry phase is different from 0.

The Berry phase,2 which was introduced in 1983, is very fashionable for the
important developments in various fields of physics. For instance, the modern theory
of the polarization of solids is based on the use of the Berry phase.3

An example of its physical importance was discovered long ago4 and is known
as the molecular Aharonov–Bohm effect. Consider an approximate molecular wave
function Φ = ψel(ξ, x)ψnuc(ξ), where ψel and ψnuc are electron and nuclear wave
functions and x, ξ electron and nuclear coordinates. Such wave functions do not
really exist in principle, since electrons and nuclei are entangled (see Chap. 27),
but they are useful in approximate treatments. Now suppose that we want to study
the roto-vibrational spectrum of the molecule. To this end, we must determine the
nuclear motion, averaged over the electronic degrees of freedom. Let pα = −i� ∂

∂xα

denote the operator of component α of the nuclear momentum. The effective nuclear
momentum π acting on ψnucl(ξ) must be obtained by averaging over the electronic
wave functions. So, it has components

παψnucl = 〈ψel |pα|Φ〉 = −i�
∂

∂ξα
ψnucl(ξ) + 〈ψel(ξ, x)|∂ψel(ξ, x)

∂ξα
〉ψnucl(ξ).

2M.V. Berry, Proc. R. Soc. Lond. A392, 45 (1984).
3See e.g. R. Resta, J. Phys.: Condens. Matter 12 R107 (2000).
4Longuet-Higgins H C, O pik U, Pryce M H L and Sack R A 1958 Proc. R. Soc. A 244 1.
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Now,

Aα = 〈ψel |pαψel〉 = −i�
∂

∂ξα
ψnucl(xi) + 〈ψel(ξ, x)|∂ψel(ξ, x)

∂ξα
ψel(ξ, x)〉

looks very much like a vector potential and is actually a Berry connection. If the
electron wave functions can be taken as real, the Berry connection vanishes, since
Aα = ∂

∂ξα

∫
dx |ψel(ξ, x)|2, and the electron wave functions are normalised to 1.

Then, from the nuclear wave function one can derive a rotational and vibrational
spectrum. The vibrational spectrum is well approximated by a collection of harmonic
terms. The rotational spectrum is that of a rotator, and we saw in Sect. 13.5 that the
eigenvalues are labeled by integer quantum numbers.

This is what happens in most cases, but there is trouble in some geometries,
like the so-called e × ε symmetries, when both electron and nuclear wave functions
transform under the symmetry operations like the pair (x, y). By symmetry, they
are doubly degenerate. It turns out that if the electron wave function are taken to be
real, then the nuclear wave functions transform as the components of a spin 1/2 and
must change sign under a 2π rotation. This is absolutely not acceptable, since the
nuclear wave functions must be single valued! The only possibility then is to assume
complex electron wave functions, despite the absence of a magnetic field. Now the
single valued wave functions are obtained. but the Berry phase produces half integer
rotational quantum numbers, which are in fact observed experimentally.

http://dx.doi.org/10.1007/978-3-319-71330-4_13


Chapter 24
Fano Resonances

Quantum Mechanics replaces smooth trends of Classical
physics by sharp leaps, but the discrete energy levels are always
resonant. This means that we have missed something general
and important up to now.

All the solvable models that we have seen in previous chapters lead to continuum
spectra for unbound particles and discrete spectra for bound states; for example,
the H atom gave us an infinity of discrete states and the electron-proton continuum.
While this may be a useful first approach to the Physics of bound states, in reality,
all excited states have one or several decay mechanisms. For example, the 2p level
of Hydrogen is discrete, but is degenerate with a system comprising the atom in the
1s state + a photon, whose energy belongs to a continuum. Including the coupling
between the atom and the radiation field, we obtain a finite lifetime and a width to
all excited states, in accord with the uncertainty principle. But the excited levels do
not simply broaden. They acquire structure when coupled to continua. One can add
many more examples of resonances to those enlisted in Sect. 11.6:

1. The Feshbach resonances ofmolecular Physics are peaks in the electron-molecule
elastic cross-section. For instance, in electron SF6 scattering there is a resonance
when the electron De Broglie wave length is close to the Sulphur-Fluorine dis-
tance. The big F ions make a sort of cage around S and when the electron wave
function fits in the cage it takes some time before it escapes.

2. Phenomena of autoionization in atoms, like the Auger effect (see Chap.26)
3. In particle physics, most particles have a finite life time and are resonances, like

the Δ++ resonance discovered by Fermi in π−proton scattering.
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The discrete spectra often arise when a partial Hamiltonian is solved, but are not
exact eigenstates when a more complete Hamiltonian is considered. In Chap. 17,
when dealing with the one-electron atom, we ignored the coupling to the transverse
electromagneticwaves; because of this coupling, all the excited states are resonances.

In order to make progress, let us start with one discrete state that we denote by |0〉
and one non-degenerate continuum C of states that we denote by |k〉. The continuum
states would be energy eigenstates with energy εk, in the absence of the mixing
with |0〉 and a density of states, we shall regard ρc(ω) as a known quantity. Hence,∫ E2

E1
dωρc(ω) is the number of states in the interval E1 < ω < E2; it may diverge

in the continuum limit, when N → ∞. In order to convert the sum into an integral,
we need a suitable measure, like

∑
k → Ω

(2π)3

∫
d3k, where Ω is the volume of the

system. In the end, all physical quantities have a finite value when Ω → ∞.

The discrete state would have a sharp energy ε0 in the absence of the mixing; ε0
is supposed to be known from the start.

Some kind of coupling (denoted by V̂ ) changes the discrete delta-like level into
a virtual level; this has a width, and can have structure. The λ set is complete, hence∫ ∞
−∞ dωρ0(ω) = 1.
This is the projected density of states

ρ0(ω) =
∑

λ

|〈0|λ〉|2δ(ω − ελ), (24.1)

where H |λ〉 = ελ|λ〉; the eigenstates |λ〉 are unknown (for the moment) and the
eigenvalues ελ can be continuous or discrete. We already encountered this function
in Chap.22. The unperturbed quantity is ρ(0)

0 (ω) = δ(ω − ε0).
The projected density of states is built in into the resolvent, or Green operator

G(ω) = (ω − H + iδ)−1, (24.2)

where δ stands for a positive infinitesimal, or δ = +0 for short. G(ω) is the Fourier
transform of the causal (i.e., proportional to θ(t)) operator

G(t) = e−i Htθ(t).

It is causal and analytical in the upper half plane. Now, inserting a complete set, one
finds

G00(ω) ≡ 〈0|G(ω)|0〉 =
∑

λ

|〈0|λ〉|2
ω − ελ + iδ

, (24.3)

and the relation to the local DOS is:

ρ0(ω) = − 1

π
ImG00(ω). (24.4)

http://dx.doi.org/10.1007/978-3-319-71330-4_17
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Here, it is understood that
∑

λ ≡ ∫
C dελ + ∑

λ∈D,whereD is the set of the discrete
eigenvalues outside the set C of energies of the unperturbed continuum. While ρc is
an input quantity of the problem, ρ0 must be found, and at this point, we must specify
a model Hamiltonian.

24.1 Fano Model

It follows from the above consideration that the model we want must have the struc-
ture of the Fano model,1 that we have encountered in Sect. 19.5.1, Eq. (19.51). The
model is often written in second-quantized form, where the operators are meant to
represent electrons and are meant to anticommute; it reads:

H = H0 + Hh, H0 =
∑

k∈C,σ

εk,σnk,σ +
∑

σ

ε0,σn0,σ (24.5)

while
Hh =

∑

k,σ

{Vka
†
kσa0σ + h.c.} (24.6)

This model does not specify the mixing mechanism. Since the problem arises in
particle Physics, in Atomic as well as in Solid State Physics, the most diverse mech-
anisms may be operating: the Fano model simply says that something eventually
mixes the continuum states with the localized state. In condensed matter physics
|0σ〉 might represent an atomic spin-orbital and |kσ〉 a free-particle state.

This is a one-particle model, so it is exactly solvable and is very useful for a quali-
tative analysis of real situations. The spin actually plays no role in the simplest version
of the model; the many-body extension creates no difficulty since the determinantal
eigenstates of Hh simply are formed with the eigen-orbitals of the one-body model
the multiplied by spin functions. There are no interaction terms (involving 2 creation
and 2 annihilation operators) in the Fanomodel. The assumption of a non-degenerate
continuum can be removed later by a direct extension of the present treatment.2

We proceed to the solution of the Fano model in its one-body form (19.51). The
Schrödinger equation H |λ〉 = ελ|λ readily leads to the infinite system

(ελ − ε0)λ|0〉 −
∑

k

λ|k〉V0k = 0

(ελ − εk)〈λ|k〉 − λ|0〉Vk0 = 0, (24.7)

however, 〈λ|k〉 must be obtained as a distribution; by setting

1Ugo Fano, Phys. Rev. 124, pp. 1866-1878 (1961).
2L.C. Davis and L.A. Feldkamp, Phys. Rev.B 15 2961 (1977).

http://dx.doi.org/10.1007/978-3-319-71330-4_19
http://dx.doi.org/10.1007/978-3-319-71330-4_19
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〈λ|k〉 = 〈λ|0〉Vk0

[
P

ελ − εk
+ Z(ελ)δ(ελ − εk)

]

, (24.8)

where Z is an unknown, we may substitute in the first of (24.7) which yields, setting
ελ = ω,

Z(ω) = ω − ε0 − Re(�(ω))

Im(�(ω))
, (24.9)

where

�(ω) =
∑

k

|V0k |2
ω − εk + iδ

(24.10)

is the self-energy. � is an analytic function of z = ω + iδ, outside the real axis. If
C = {a ≤ ω ≤ b}, then there is a cut just below the axis, with a and b as branch
points. We must still find 〈λ|0〉 and appreciate the meaning of the self-energy. This
is best done in terms of the density of states, as follows.

24.2 Working in a Subspace: The Self-energy Operator

In many problems, it is convenient to put the Hamiltonian in a block form,

H =
(
HAA HAB

HBA HBB

)

, (24.11)

where A and B are different subspaces of the Hilbert space, that is, the Hilbert space
is A

⋃
B; typically they denote, respectively, the low energy and high energy parts.

Then, a low energy phenomenon occurs essentially in the A subspace but is subject
to indirect influences from B. The resolvent matrix G is defined by

(ω − H + iδ)G(ω) = 1, (24.12)

where iδ is a small imaginary part added to the frequency in order to avoid divergences
on the real axis; however, the imaginary part can be understood. More explicitly,

(
ω − HAA −HAB

−HBA ω − HBB

) (
GAA GAB

GBA GBB

)

=
(
1 0
0 1

)

. (24.13)

This is readily solved. The solution in A subspace reads as:

GAA = (ω − HAA − HAB(ω − HBB)−1HBA)
−1. (24.14)

Here, −HAB(ω − HBB)−1HBA is a matrix self-energy that conveys the effects of the
B subspace on the resolvent in the A subspace. That is, one can solve the problem
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within subspace A with an effective Hamiltonian H = HAA + �AA where we may
write symbolically �AA = HAB

1
ω−HBB

HBA. Now we apply this result to the Fano
model, setting

HAA = ε0n̂0 ≡ ε0|0〉〈0|, HBB =
∑

k

εk |k〉〈k|, HAB =
∑

k

V0k |0〉〈0|.

So,

HAB
1

ω − HBB
HBA =

∑

k

|0〉〈k| 1

ω − ∑
k ′ |k ′〉εk ′ 〈k ′|

∑

k”

|k”〉Vk”0,

and finally, we obtain the exact Green’s function

G00 = 1

ω − ε0 − �(ω)
, (24.15)

where �(ω) is the self-energy (24.10). The other elements of the resolvent matrix
can also be derived in this way.

This is a complex function of ω, in which
∑

k stands for an integral;

�1(ω) ≡ Re�(ω) = P
∑

k

|Vk0|2
ω − εk

�2(ω) ≡ Im�(ω) = −π
∑

k

|Vk0|2δ(ω − εk). (24.16)

Outside C, �2 = 0. � is a Herglotz function, that is, −π−1Im�(ω) ≥ 0; it follows
that G00(ω) is also Herglotz, which is important to ensure that ρ0 ≥ 0.

In order to obtain new insight on the wave functions, we change variables in
Eq. (24.3)

G00(ω) =
∫

dελρ0(ελ)
|〈0|λ〉|2

ω − ελ + iδ
, (24.17)

where we used the one-to-one correspondence between states and energies, valid
thanks to the assumption of a non-degenerate continuum. In this way, with λω denot-
ing the eigenstate at ε = ω,

ImG0(ω) = −π

∫
dελρ(ελ)|〈0|λ〉|2δ(ω − ελ) = −πρ(ω)|〈0|λω|2, (24.18)

and so,

|〈λω|0〉|2 = −1

πρ(ω)
ImG00(ω) = ρ0(ω)

ρc(ω)
.

Since the phase can be chosen at will, we are free to set
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〈λω|0〉 =
√

ρ0(ω)

ρc(ω)
. (24.19)

Together with Eq. (24.8), this result yields all the amplitudes. Besides,

�2(ω) = −πρ0V 2
ω , (24.20)

where, following Fano, I have set Vω = V0k with εk = ω.

This technique is useful when it is desirable to work explicitly in a subspace A
of the Hilbert space (in this case represented by the discrete state) while taking into
account of the remainder B through a self-energy.

24.3 Fano Line Shapes

This model gives a successful qualitative description of resonances like the state
2s2p1P of He. Like all the states of He with both electrons excited, this one is
unbound; it can be considered as a temporary bound state, with an energy of about
60eV, well above the ionization threshold at about 25eV above the ground state.
It broadens by interacting with the auto-ionization continuum. Such situations are
common in spectroscopies (e.g. electro energy loss, optical absorption). A common
feature of many such spectra is a characteristic skew resonant line shape sitting on a
non-resonant continuum. The Green’s function G00 may be rewritten as

G00 = eiΔ
√[ω − ε0 − �1]2 + �2

2

,

where �1 = Re�(ω),�2 = Im�(ω) and

tan(Δ) = �2

ω − ε0 − �1
.

Thus, Δ is the phase of G00. Since for large |ω| G00 ∼ 1
ω
, Δ changes by π across

the resonance. We may rewrite Eqs. (24.19) and (24.8) in terms of Δ:

〈0|λω〉 = sin(Δ)

πρVω

〈k|λω〉 = 1

ρc

[
V (εk) sin(Δ)

πV (ελ)(ελ − εk)
− cos(Δ)δ(ελ − εk)

]

. (24.21)

Let T̂ denote the operator of the transition from an initial state (for instance, the
ground state of He) to the resonant H eigenstate |λω〉. One finds that:
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〈i |T̂ |λω〉 = − cos(Δ(ω))〈i |T̂ |kω〉 + sin(Δ(ω))

πρcVω
〈i |T̂ |0̃〉, (24.22)

where

|0̃〉 = |0〉 + P
∑

k

V (εk)

ω − εk
|k〉

is the discrete state with a halo of continuum. As ω goes from below to above
the resonance, tan(Δ) diverges, sin(Δ) is even and cos(Δ) is odd; therefore, the
line shapes can be asymmetric. For a simple qualitative analysis, Fano proposed
considering

q = 〈i T̂ |0̃〉
πρcVω〈i |T̂ |kω〉 (24.23)

as a constant. The reduced line shape is defined as

f = |〈i |T̂ |λω〉
〈i |T̂ |kω〉 |2. (24.24)

It turns out that

f = sin2(Δ)| − cot(Δ) + q|2 = | − cot(Δ) + q|2
1 + cot2(Δ)

. (24.25)

Away from the resonance, the denominator represents the background due to tran-
sitions to the unperturbed continuum. Rather than plotting versus ω, Fano proposed
plotting versus the reduced energy

E = − cot(Δ) = ω − ε0 − �1

πρcV 2
ω

; (24.26)

in this way, one can compare the shapes of resonances centered at different energies
with different widths.We arrive at the celebrated Fano line shape. For q= 0, is shows
an anti-resonance, for q= 1, it becomes step-like, and for q= 3 it is a resonance with

Fig. 24.1 The Fano line
shapes. Black, q = 0; Green,
q = 1; Red, q = 3

-4 0 4 6

2

4
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the typical asymmetry. Note that for E = −q, the transition is forbidden. For large
q, the transition to the discrete state dominates and the shape tends to be symmetric.
The Fano treatment is an example of the art of extracting the essential information
from a phenomenological model that is by nature qualitative or semi-quantitative
(Fig. 24.1).



Chapter 25
Quantum Statistical Mechanics

The classical approach by Gibbs (Sect.5.20) in the quantum
context fully reveals its power.

25.1 Density Matrix

In general, the process that we use to prepare a system of atoms, molecules or
whatever we want for a measurement produces many copies, but not all in the same
quantum state. A pure state in which all the molecules, say, are in the same state, is
a limiting case. In general, the system will be in a mixed state. One reason for that
is that thermal excitations are unavoidable. Let the possible states be vectors of a
Hilbert space with a basis {〈ψn|}. The expectation value of an operator Â is

〈 Â〉 =
∑

n

Pn〈ψn| Â|ψn〉, (25.1)

where Pn is the (classical) probability of finding the system in 〈ψn|.
Then, one cannot assign to the systemawave function, but rather a density operator

ρ̂ =
∑

n

Pn|ψn〉〈ψn|, (25.2)

and the mean (25.1) is given by

〈 Â〉 = Tr(ρ̂ Â). (25.3)

Evidently, Tr(ρ̂) = 1 and ρ̂† = ρ̂. For example, let |k〉 be the De Broglie wave
with momentum p = �k; then, we can make a quantum superposition of 〈x |k〉
and 〈x | − k〉; the wave function might be ψ(x) = 1√

π
cos(kx). This state can be

obtained by shooting particles with a gun against a potential wall at x = 0. The wave

© Springer International Publishing AG, part of Springer Nature 2018
M. Cini, Elements of Classical and Quantum Physics,
UNITEXT for Physics, https://doi.org/10.1007/978-3-319-71330-4_25
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function vanishes by quantum interference when kx is an integer times π. This may
be contrasted with themixed state given by ρ = 1

2 (|k〉〈k|+|−k〉〈−k|), whichmay be
obtained by shooting particles with two guns (k from the left and -k from the right).
A detector picks one or the other with the same probability, and no interference takes
place.

25.2 Quantum Canonical Ensemble

In QuantumMechanics, the reasoning leading from the microcanonical to the canon-
ical ensemble is quite the same as in the classical theory. In the canonical ensemble,
at temperature T the probability that the system energy is one of the eigenvalues εn
is 1

Z e
− εn

KT , where 1
Z is a normalization factor, in perfect analogy with the classical

theory. While in classical Statistical Mechanics, we defined the canonical partition
function (5.42) as

Z =
∫

e−βHS(p,q)dΓ,

in terms of a phase space integral, the quantum partition function is

Z = Tr [e−β Ĥ ], (25.4)

that is, Z = ∑∞
n=0 e

− εn
KT , where Ĥ is the Hamiltonian. So, 1

Z e
− εn

KT is the probability
of having a system at level n.

According to (5.43), the internal energy U is given by:

H = − 1

Z

∂Z

∂β
= −∂ ln(Z)

∂β
.

Adding a constant to HS modifies Z but leaves the physics unchanged. Z allows us
to calculate averages. The mean energy is

E =
∑∞

n=0 εne− εn
KT

∑∞
n=0 e

− εn
KT

= Tr [He−βH ]
Z

= − ∂

∂β
LogZ . (25.5)

Let us work out this formula for the harmonic oscillator. Zosc is the sum of a geo-
metrical series:

Zosc =
∞∑

n=0

e− −nω�

KT = [
1 − e−β�ω

]−1
.

http://dx.doi.org/10.1007/978-3-319-71330-4_5
http://dx.doi.org/10.1007/978-3-319-71330-4_5
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25.3 Ideal Fermi Gas and Ideal Bose Gas

Suppose we have 2 particles and each of them has the same probability of being in
one of two single-particle states A and B. What is the probability P of having both
in the same state? It depends on the statistics.

Classical Physics considers only distinguishable particles, since (at least, in prin-
ciple) one can always mark them somehow and follow their trajectories with conti-
nuity. There are 4 cases:

⎧
⎪⎪⎨

⎪⎪⎩

ψA(1)ψA(2)
ψA(1)ψB(2)
ψB(1)ψA(2)
ψB(1)ψB(2)

=⇒ P = 1

2
.

InQuantumPhysics, identical particles are indistinguishable and cannot be identified
when observed again. This makes a lot of difference.

For Fermions, there is one possibility:

{ψA(1)ψB(2) − ψB(1)ψA(2) =⇒ Ptogether = 0.

For Bosons, there are 3 cases:

⎧
⎨

⎩

ψA(1)ψA(2)
ψA(1)ψB(2) + ψB(1)ψA(2)

ψB(1)ψB(2)
=⇒ Ptogether = 2

3
.

In the case of photons, the enhanced probability of finding two of them in the same
quantum state rather than in different states is called photon bunching. In terms
of the electric field E(r, t), the correlation function of Eq. (4.11) has a constant
modulus in the case of a perfectly coherent wave E(r, t) = exp(i(kr − ωt)) but
is generally peaked at τ = 0 and this is a classical way to describe the underlying
photon bunching.

Now suppose we have a gas of N >> 1 identical independent particles (perfect
gas). Using the microcanonical ensemble, we suppose it is isolated with total energy
E . The system is in a statistical (not quantum) superposition of quantum states,
and those leading to the same macroscopic behavior have the same probability. The
principle is the one formulated by Gibbs:

The basic assumption of Statistical Mechanics is :
all the microstates that correspond to the same

macroscopic parameters have the same probability

in equilibrium.

http://dx.doi.org/10.1007/978-3-319-71330-4_4
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One can measure the energies ε of individual molecules in the gas. They turn out to
be distributed according to a law n(ε).

To define a microstate, we work in the μ space, which is the phase space of the
single particle, with coordinates x, y, z, px , py, pz . Wemake this space discrete, that
is, we divide it into small cells. More precisely, the size of a cell must be macro-
scopically negligible, yet it must be large enough to accommodate the coordinates
of many molecules at any given instant of time, and the ith cell must contain gi � 1
degenerate quantum states for a single-particle. We also make the single particle
energies discrete by dividing the ε axis into small intervals. Next, we consider all the
possible ways to distribute the N gas molecules among the cells with ni molecules
in the i th cell, with the constraint that the number of molecules and the total energies
are given, that is, ∑

ni = N , (25.6)

∑
εi ni = E . (25.7)

Since the particles are indistinguishable, the exchange of particles between different
states makes no sense. We first seek to find how many microstates realize a given
distribution n1, n2, n3 . . . and then we obtain the most probable distribution. For
classical Boltzmann particles, one obtains

nr = gr e
−β(εr−μ),

where μ is the chemical potential. We get different solutions for Bose and Fermi
cases.

25.3.1 Bose–Einstein Statistics

The statistics assigns the equilibrium value ni of the number of Bosons in cell i .
A microstate is specified when all the numbers of bosons in each quantum state
are assigned. The equilibrium condition corresponds to the maximum number W of
microstates that can be attained by varying the population nr of cell r compatibly
with the above conditions is therefore

∂

∂nr
[lnW − αN − βE] = 0.

where α and β are Lagrange multipliers. Now,

W =
∏

r

Wr ,
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where Wr is the number of ways one can distribute nr particles in cell r among the
degenerate gr states. This is the same problem as finding the number of ways to put
nr marbles in gr drawers. For 2 marbles in 3 drawers, one finds 6 ways:

|| · · | · | · | · ·|

·|| · ·| · | · ·||

The first diagram puts 2 marbles in drawer 3, the second diagram puts one in the
second and one in the third, and so on. The positions of the vertical lines | corre-
spond to the pairs (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4). In general, one obtains a
configuration for each way of aligning the dots with the gr − 1 vertical lines, so

Wr =
(
nr + gr − 1
gr − 1

)
≈

(
nr + gr
gr

)
,

since gi � 1. Then,

∂

∂ni
lnW = ∂

∂ni

∑
[(nr + gr ) ln(nr + gr ) − nr ln nr − gr ln gr ] = ln

ni + gi

ni
,

and the condition
ln

ni + gi

ni
− α − βεi = 0

yields the Bose–Einstein distribution

ni = gi

eα+βεi − 1
≡ gi

eβ(εi−μ) − 1
.

The parameter α is fixed by
∑

ni = N , and μ is the chemical potential. By analogy
with the Boltzmann distribution, which is the limit for βεi � 1, β = 1

KBT
.

Ideal Gas of Atoms

For an ideal gas of atoms having integer spin s, since ni must be positive, μ must be
below the lowest of the levels εi . Let this level be εm = 0, that is, we shall take εm
as the origin of energies. In line with Lagrange’s method, it must be determined by
fixing the number of particles in a given volume V .

Above a critical temperature TC , the particles occupy all the energy states in such
a way that every single state gives a negligible contribution, in analogy with the
Boltzmann distribution; however, TC is the onset of the Bose–Einstein condensation.
This marks a dramatic departure from the classical behavior. Below TC , a number
n0 of particles, which is a finite fraction of N , is in the state with ε = 0. This is the
condensate. As a consequence, when we work out the sum over states as an integral,
we must be ready to sort the population of ε = 0 out of the integral.
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Let us consider T > TC first. In order to obtain the number of atoms in the cell
in phase space, whose volume is h3, one must multiply the Bose distribution by
(2s+1)d3 pdV

h3 , and the condition (25.6) is readily found by integrating over the angles:

N = 4πV (2s + 1)
√
2m3

h3

∫ ∞

0

√
εdε

eβ(ε−μ) + 1
. (25.8)

μ is still unknown, but we can find it soon. To this end, we introduce the De Broglie’s
thermal wave length

λ(T ) = h√
2πmKBT

, (25.9)

then define the fugacity z = eβμ, and define the integral

g 3
2
(z) = 2√

π

∫ ∞

0

√
xdx

z−1ex − 1
. (25.10)

Now we can rewrite the condition (25.6) in the form

N

V (2s + 1)
= g 3

2
(z)

λ3(T )
(25.11)

This is the equation that must be solved for z and so yields μ. When T decreases
towards TC , we reach the critical point where μ = 0, z = 1 and g 3

2
(1) = ζ( 32 ) ≈

2.612, where ζ is the Riemann zeta function. Hence, the critical temperature is given
by:

TC =
(

N

(2s + 1)V ζ( 32 )

) 3
2 h2

2πmKB
. (25.12)

For T < TC , Eq. (25.8) becomes

N − n0 = 4πV (2s + 1)
√
2m3

h3

∫ ∞

0

√
εdε

eβ(ε−μ) + 1
, (25.13)

where n0 = 1
e−βμ−1 = z

z−1 .

Liquid He 4

LiquidHe 4 exists in two distinct phases. Above a critical temperature (TC = 2.19 ◦K
at low pressures, but 2 ◦K at 10 atmospheres), He I behaves as an ordinary liquid.
Below TC , HeII is still a liquid, but a very unusual one. Pyotr Kapitsa, John F. Alen
and Don Misener discovered, 1n 1937, that He 4 becomes a superfluid, with zero
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viscosity and zero entropy. This is a manifestation of the Boson condensation. It
does not become a solid at lower temperatures, because the zero point oscillations
keep the would-be solid consistently molten unless under a pressure of about 25
atmospheres. Moreover, He II is a superfluid, with quantized vortices. It has a very
high thermal conductivity and heath propagates as second sound waves. He II has a
complex spectrum of elementary excitations. The properties of the ideal Bose gas are
somewhat spoiled by the interactions, but a partial condensation occurs and a fraction
of the atoms go to a single state, the one of lowest energy (Bose condensation).

The Bose–Einstein condensation of supercool gases was obtained experimentally
in the ’90swith the introduction of laser cooling techniques.William Phillips, Claude
Cohen-Tannoudji and Steven Chu received the 1997 Nobel prize for this and for
opening a new chapter of Physics at ultra-low temperatures.

25.4 Black Body and Photons

In the case of Photons, the condition
∑

ni = N is missing (the number of photons
is variable), and the Lagrange multiplier is α = 0. So, the mean number of photons
in each normal mode (energy εω = �ω) is

nω = 1

eβεω − 1
,

and each normal mode contains the energy

Eω = εω

eβεω − 1
. (25.14)

The k points form a lattice in reciprocal space, and each corresponds to two normal
modes (two polarizations). In the continuum limit, the number of modes in a volume
of k space is obtained dividing by the volume associated with each mode:

∑

k

→ L3

(2π)3

∫

k
d3k. (25.15)

Let V = L3 denote the volume of the photon gas; the number of modes in dk is
2 V
8π3 4πk2dk. Since ω = ck, the number of modes in dω is Vω2dω

π2c3 . Then, the energy
at ω is

dEω = �ω
1

eβεω − 1

Vω2dω

π2c3
≡ Vu(ω)dω.

Hence, we get Planck’s law for the energy density:

u(ω) = �ω
1

eβεω − 1

ω2

π2c3
.
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or

u(ν) = 8π2hν3

c3
1

e
hν

KB T − 1
,

which was the starting point of Quantum Theory in the year 1900. This simple
formula, which holds true from radio waves to γ rays, has the remarkable property
that when the black body is inmotion relative to the observer, the spectrum isDoppler
shifted, but still appears as a black body spectrum, albeit, at a different temperature
(hotter if the body is approaching, cooler if it is receding). The reason is simple: if
it is black, it remains black. A series expansion gives u(ν) = 8πν2KBT

c3 − 4πhν3

c3 +
2πh2ν4

3c3KBT
+ O(ν5) and the classical formula la (5.47) is the first term.

The maximum of the distribution ωmax is proportional to the temperature (Wien’s
law). Integrating over frequency, we obtain the Stefan-Boltzmann: law:

U =
∫

udω = �

π2c3

∫ ∞

0

ω3dω

exp[� ω
KBT

] − 1
.

Setting x = β�ω,

U = �

π2c3

(
KBT

�

)4 ∫ ∞

0

x3dx

ex − 1
.

Now, ∫ ∞

0

x3dx

ex − 1
= π4

15

and U ∼ T 4, but the constant of proportionality, which could not be determined by
thermodynamics, is fixed by the Quantum theory.

25.4.1 Einstein A and B Coefficients and the Principle of the
LASER

Already in 1917, A. Einstein used Planck’s law to establish relations between absorp-
tion and emission of radiation by a molecule at temperature T . The rate of stim-
ulated absorption is Wa = Bau(ω), where Ba is the absorption coefficient. The
rate of stimulated emission is Wse = Bseu(ω), where Bse is the stimulated emis-
sion coefficient. Letting A denote the spontaneous emission rate, the total emission
rate is Wtot = A + Bseu(ω). Introducing the numbers of molecules Nu and Nl in
the upper and lower levels, respectively, the Boltzmann distribution requires that
Nu
Nl

= exp(− hν
KBT

). In equilibrium, Nl Bsau(ω) = Nu(A + Bseu(ω)); this gives

us u(ω) =
A

Bsa
Nl
Nu

− Bse
Ba

. Comparing with Planck’s law, one finds that Ba = Bse and

A = 8πhν3

c3 B. Normally, a light wave is absorbed by matter, but if an excited state is

http://dx.doi.org/10.1007/978-3-319-71330-4_5
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more populated than the ground state, the stimulated emission prevails on absorp-
tion and the light is amplified. The population inversion can be generated by optical
or electric excitation. The Light Amplification Stimulated Emission of Radiation is
based on this principle, but only started to operate in 1960. The stimulated emission is
produced in a cavity and the frequency is one of the resonant frequencies; in this way
all the photons produced by the laser correspond to a single mode and are in phase,
with the result that the laser beam has a high degree of coherence and directionality.
Initially it was regarded as a useless machine, just an interesting toy for scientists;
now, the applications in surgery and in everyday life are countless.

25.4.2 Specific Heats of Solids

The classical equipartition theoremassigns to every oscillator in 3d the energy Eosc =
3KBT . Therefore, the contribution of each oscillator to the specific heat CV = ∂Eosc

∂T
should be 3KB . This is grosso modo true around room temperature (the Dulong and
Petit law), but specific heaths drop at low temperatures.

By 1907, Einstein had already proposed a quantum model of the specific heats
of solids, in which the quantized atomic vibrations (phonons) give to the energy a
contribution

Ephon = n�ω

eβ�ω − 1
,

where n is the number of oscillators and ω their pulsation; the phonons are Bosons.
The specific heath is given by:

CV ≡ ∂Ephon

∂t
= n(�ωβ)2KBeβ�ω

(eβ�ω − 1)2
.

For β → 0 (high temperatures) this agrees with the classical Dulong and Petit law.
Below the Einstein temperature TE = �ω

KB
, the drop CV → 0 for T → 0 is in

qualitative agreement with experiment.

25.5 Fermi-Dirac Statistics

We divide the phase space into macroscopically small cells, but such as to contain
a large number of quantum states; so, cell i will contain gi � 1 states. Since the
exchange of identical Fermions has no meaning, a micro-state is assigned once the
numbers n1, n2, n3, . . . of particles in the cells of energy ε1, ε2, ε3 · · · is given.

The number W of ways we can realize the distribution must be maximised under
the constraints

∑
i ni = N ,

∑
i εi ni = E .



360 25 Quantum Statistical Mechanics

Since the cells are statistically independent, e W = ∏
i Wi . Cell i contains ni

particles in gi states, and the occupation numbers can only be 0 or 1. Hence,

Wi =
(

gi
ni

)
,

W = ∏
i Wi = ∏

i
gi !

ni !(gi−ni )!
and Stirling’s formula ln n! ≈ n ln n gives us:

lnW ≈
∑

i

{gi ln gi − ni ln ni − (gi − ni ) ln(gi − ni )}.

We need the maximum for fixed E and N . By the method of Lagrange’s multipliers,
we impose the vanishing of

∂

∂nr

[
∑

i

{gi ln gi − ni ln ni − (gi − ni ) ln(gi − ni ) − α
∑

ni − β
∑

εi ni

]
.

Since 1 is negligible compared to ni ,

− ln nr − (−) ln(gr − nr ) − α − βεr = 0.

Hence, ln
[

gr−nr
nr

]
= α + βεr and this implies the Fermi-Dirac distribution

nr = gr

eα+βεr + 1
≡ gr

eβ(εr−μ) + 1
, (25.16)

where μ is the chemical potential. For large εr − µ, this reduces to the Boltzmann
distribution with β = 1

KBT
. Only a sign in the denominator distinguishes the Fermi

from the Bose distribution.
At absolute zero, the Fermi function f (x) = 1

eβx+1 becomes a step function, and
μ = EF , since the step is at the Fermi level, or highest occupied level. The step
becomes gradual at finite temperatures, but for a typical metal EF = some eV, and
many thousand degrees are needed to round the step significantly (room temperature
corresponds to 25 meV).

25.5.1 Fermi Gas

The Fermi distribution describes the occupation of electronic states in solids. The
Fermi gas is the perfect gas of Fermionswith a given uniformdensityρ. If interactions
are considered, it becomes a Fermi liquid, characterized by plasma oscillations (e.g.
in metals) and in He 3 by the propagation of hydrodynamic waves called zero sound,
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having frequency of the order of qvF , where q is the wave vector and vF is the Fermi
momentum divided by the electron mass.

1 dimension (d = 1)

Suppose there are N � 1 electrons in a box of length L with periodic boundary
conditions1 (x = L is identified with x = 0; if you like, you can think of a ring).
The density is ρ = N

L and the wave functions have the space-dependent factor

ψk(x) = 1√
L
eikx ;

the boundary conditions eikL = 1 allow for the wave vectors

kn = 2πn

L
. (25.17)

The interval between two allowed wave vectors is

Δk = 2π

L
.

The N electrons in the ground state of the Fermi gas fill the levels according to the
aufbau principle, up to the Fermi level; it corresponds to the wave vector k = kF , to

the momentum pF = �kF and to the energy εk = p2F
2m . Between k = 0 and k = kF

there are N spin-orbitals, that is, N/2 orbitals:

N = 2
∑

k<kF

1.

To compute kF , one goes over to a continuous description and

N/2 =
∑

k≤kF

→
∫ kF

0

dk

Δk
= kF

Δk
. (25.18)

therefore, kF is given by:

kF = Δk
N

2
= πN

L
= πρ. (25.19)

d = 3

In 3 dimensions, this becomes the old Sommerfeld theory of metals: let us consider
a gas with density ρ = N

L3 ≡ N
V . Instead of (25.18), in 3d, one writes:

1For large L , the properties become independent of the size of the box.
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∑

k<kF

= L3

(2π)3

∫

k<KF

d3k. (25.20)

Again, we put 2 electrons in every orbital in order of increasing energy untill all
electrons have been used (the aufbau method); in spherical coordinates,

N = 2
∑

k<kF

= 2
V

(2π)3

∫

k<kF

d3k = 2V 4π

8π3

∫ kF

0
k2dk,

and so

N = Vk3F
3π2

, (25.21)

that is,
kF = (3π2ρ)

1
3 ∼ 3.093 ρ

1
3 .

Fermi Gas Properties of Simple Metals

Elements with s or p valence electrons like Na, K and Al, are called simple because
qualitatively several properties can be described as by the Sommerfeld model, or by
Jellium model, that I illustrate briefly in this paragraph. The Fermi gas with density
ρ has a characteristic length, and the mean radius per particle r0 is defined by

1

ρ
= 4π

3
r30 . (25.22)

Therefore, r0 ∼ 1
kF
. Usually it ismeasured in Bohr radii introducing theWigner-Seitz

radius rs = r0
aB
. The mean distance between an electron and its nearest neighbor is

∼r0. Cs has rs ∼ 6, while for Al, rs ∼ 2; the other metallic elements are in this
range. The Fermi energy is

EF = �
2

2m
(3π2ρ)

2
3 .

For ρ = 0.1 a.u. the Fermi energy is2EF ∼ 1.03a.u. ∼ 28 eV; the Fermi energies
of metallic elements are typically 5–10 eV. The total energy of the gas is

Etot = 2
∑

k<KF

�
2 k2

2m
= �

2 V

2π2m

∫ KF

0
k4dk = �

2 V

10π2m
kF

5, (25.23)

and the kinetic energy density

Etot

V
∼ ρ

5
3 ∼ r−5

0 (25.24)

2In Atomic Units (a.u.) we set � = 1, lengths are in Bohr radii (0.529 ρA) energies in Hartrees
(27.2 eV).
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is a steep function of the density. Using (25.21), the mean kinetic energy per electron
is found to be

ε̄ = Etot

N
= 3

5
EF .

For ρ = 0.1a.u., the energy density is about 0.06 a.u.
The Sommerfeld theory explains why the electronic contribution to the specific

heath of metals grows linearly with the temperature T .
However, the energy density of the Fermi gas is positive (there is only kinetic

energy) and the electrons must be confined in the metal by some box, otherwise they
would escape and the metal should be unstable. While it is clear that electrostatic
forces must be responsible somehow, the cohesion of metals is harder to understand
than that of ionic crystals, which is readily explained classically. The Sommerfeld
theory is not enough.

To describemetals, the Jelliummodel is widely used; in it, the electronsmove over
a uniform positive charge background. The negative charge of the electrons is exactly
compensated by the background, and there is no direct electrostatic contribution to
the ground state energy. However, there is also an exchange contribution. One can
show that this can explain the cohesion of the metal in a limited range of ρ, which is
close to the observed one. One finds that

ε̄ ∼ 2.21

r2s
− 0.916

rs
(25.25)

where the energy is in (1 Rydberg = 13.59 eV). The first term is kinetic energy,
while the second is exchange. Extra corrections, which become unimportant at small
rs , arise from correlation (that is, from the fact that electrons can reduce the mean
repulsion by adopting a many-body wave function that is a mixture of many Slater
determinants).

The above oversimplified picture should not conceal the fact that in solids, widely
different phenomena can be caused by tiny energy differences. Magnetism is a very
large and growing chapter of solid state physics. A weak effective attraction between
the Fermions near the Fermi level can be the result of effective screening of the
repulsion and small lattice and/or magnetic effects. The Fermions tend to form pairs
called Cooper pairs at low temperature. This leads to superconductivity in which a
macroscopic quantum wave function is formed (Sect. 25.6.1). The Cooper pairs are
behave like, bosons, except that they do not produce a Bose condensate but a more
subtle many-body ground state with perfect diamagnetism and zero resistance.

Equation (25.25) shows that, unlike the classical gas, the Fermi gas tends to be
perfect at high density, because the kinetic energy dominates. Everything becomes
a metal under high enough pressure, and the interior of the planet Jupiter is believed
to contain a deep ocean of metallic Hydrogen.

The Meitner–Auger Effect

The Fermi distribution is the ground state of the electron liquid (i.e., interacting
electron gas). Any state with a hole in a single- electron level below the Fermi
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Table 25.1 The atomic subshells are denoted by principal quantum number, the symbol s, p, d, · · ·
of the orbital angular momentum and a suffix showing the total one-electron angular momentum for
one electron, as shown in the upper row. The corresponding spectroscopic notations for the same
subshells are reported in the lower row

1s 1
2

2s 1
2

2p 1
2

2p 3
2

3s 1
2

3p 1
2

3p 3
2

3d 3
2

3d 5
2

4s 1
2

4p 1
2

4p 3
2

4d 3
2

4d 5
2

4 f 5
2

4 f 7
2

K L1 L2 L3 M1 M2 M3 M4 M5 N1 N2 N3 N4 N5 N6 N7

level is an intrinsically unstable excited state and must decay somehow. Indeed, it
can decay by a mechanism driven by the Coulomb interaction itself through a self-
ionizing process. Let |Φi 〉 = ch |Φgs〉 denotes the state obtained from the N -electron
ground state |Φgs〉 by removing an electron in a level below the Fermi energy; this
excited state can decay by shooting an electron out of the system and leaving the
system with a pair of holes nearer in energy to the Fermi energy. The final state will
be of the form |Φ f 〉 = c†(k)ch1ch2|Φgs〉, where c†(k) creates a free electron, that is
not interacting with the rest of the system and h1, h2 are hole states. The transition
is allowed by energy conservation if |Φ f 〉 is degenerate with |Φi 〉 and the Coulomb
interaction has a matrix element connecting |Φi 〉 with |Φ f 〉. The German Gregor
Wentzel discovered this mechanism and obtained the transition rate

Pi f = 2π

�
|〈Φ|HC |Φ f 〉|2 (25.26)

through the Fermi Golden rule; the effect had been discovered experimentally in
atoms in 1923 by Lise Meitner and clarified in 1925 by Pierre Auger. There may
be many alternative hole states available to a system for decay and the final-state
holes can decay themselves by the same mechanism until the Fermi distribution is
established. A plot of the Auger electron current versus kinetic energy is called the
Auger spectrum; indeed, Auger spectroscopy is rich in information on the chemical
state of the atom and on the local physics of the system. The Auger effect is in
competition with radiative decay, which is generally faster in heavy atoms (X-ray
emission). In modern theories, the production and the various decay channels of a
core-hole in atoms is described as a coherent quantum process. In Auger spectra, one
can observe the atomic multiplets of the two final-state holes, as shown in Fig. 25.1.
The red spectrum originates from the decay of a M4 hole and the blue from a M5

hole. The multiplet symbols that label each peak refer to the two-hole final state
of the Auger transition. For example, 3P2 means that the two holes are in a triplet
state, with orbital angular momentum L = 1 and total angular momentum J = 2
(Fig. 25.2).

Degeneracy Pressure

The Fermi distribution is a sharp step at absolute zero; with increasing KBT , the step
becomes a gradual drop. The chemical potential µ corresponds to a 1

2 occupancy.
At KBT > µ, many electrons are in the exponential tail of the distribution, and the
Fermi gas resembles the classical one. In metals, under normal conditions, the step
is sharp and the gas is degenerate. Its equation of state is quite unlike a classical gas.



25.5 Fermi-Dirac Statistics 365

M4N4,5N4,5M5N4,5N4,5

1S0

1G4 +1 D2

3P0,1

3P2

3F2,3

3F4 +1 S0

1G4 +1 D2

3P0,1

360 365 370

Fig. 25.1 Sketch of theM5N4,5N4,5 (red) andM4N4,5N4,5 (blue) spectrumofCd vapor, in arbitrary
units, frommeasurements byH.Aksela and S.Aksela.Many of themultiplet terms arewell-resolved
and the intensities also convey useful information on the hole wave functions. The labels denote
the final-state two-holes states, in the notation explained in Table25.1. The assignments were done
by intermediate coupling calculations of line positions and intensities. The intermediate coupling
calculations include effects of the Coulomb interaction and of the relativistic spin-orbit coupling

Fig. 25.2 Thick curve:
Fermi function for
KBT = 0.1µ; thin curve:
Fermi function for
KBT = 0.3µ

For fixed N , the energy (25.23) depends on volume:

Etot = �
2 V

10π2m
(3π2N )

5
3 V

−5
3 = η V− 2

3 , (25.27)

where

η = �
2

10π2m
(3π2N )

5
3 . (25.28)

So, even at absolute zero, the Fermi gas has pressure, which is of quantumnature. One
can evaluate this pressure through a thought experiment. When the volume expands
adiabatically3 by dV , the gas does a work δL = PdV ; its energy changes by

3By the first principle, dEtot = δQ + δL , and here, δQ = 0.
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dEtot = −PdV . (25.29)

From (25.27),
dEtot

dV
= −2

3

E

V
.

So, the degeneracy pressure is

P = 2

3

Etot

V
= 2

3
�
2 (3π2ρ)

5
3

10π2m
. (25.30)

The equation of state of the classical perfect gas reads as: P = NKBTρ; the pres-
sure vanishes at absolute zero and grows linearly with the density. Equation (25.30)
predicts a very different trend, with a steeper increase of pressure, even at the lowest
temperatures. This explains why metals are highly incompressible.

Degenerate Stars

The same law explains the stability of the degenerate stars (white dwarfs and neutron
stars). White dwarfs are stellar remnants with a mass on the order of a solar mass
but a radius comparable to the Earth radius. The forces arising from the degeneracy
pressure are among the strongest in Nature, and the electron gas can keep the star
stable against gravitational collapse up to the Chandrasekar limit (1.4 solar masses).
The neutron stars are even more extreme, with a similar mass in a sphere of a few km
across. In both cases, the work of Chandrasekar requires the relativistic extension of
the theory.

He 3

The isotope 3 of He is produced from the decay of artificially produced Tritium; it
could be a convenient fuel for fusion reactors. Here I stress that it is a Fermion and
does not become superfluid like He 4. At 2.49 mK temperatures, however, the weak
attractive forces produce Cooper pairs and at still lower temperatures a superfluid
phase occurs.

25.6 Superconductivity

In 1911, Kamerlingh Onnes discovered superconductivity, and if I say that the dis-
covery was unexpected, this is an understatement. It was a mystery, something unbe-
lievable, just it could be reproduced at will by measuring the resistance of a piece
of Hg versus temperature. Below a critical temperature TC , which in conventional
superconductors is no more than a few degrees Kelvin, the electrical resistance is
nothing. Please believe me, I do not mean that it is small; it is just 0. Moreover, the
superconductor is a perfect diamagnet, expelling the entire magnetic field from the
bulk. If a piece of superconductor is put in a field, this is allowed within a thin pen-
etration depth, and repelled. The repulsion levitates objects. Magnetically levitated
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trains can travel at 500Km per hour. This phenomenon is one of the first discovered
examples of the magic of Quantum Mechanics, but several decades passed before
it was understood. In superconductivity, most of the electrons behave as they do in
ordinary paramagnetic metals, but a strict minority of them forms pairs, thus produc-
ing a drastic change of the macroscopic properties; the most important changes are
zero resistance and perfect diamagnetism. The most complete theory is the one cred-
ited to Bardeen, Cooper and Schrieffer (BCS). The ingredients are bare electrons,
the Coulomb repulsion, phonons, and the electron-phonon interaction. BCS show
that the electrons close to the Fermi level with opposite spin and momentum form
bound pairs and produce the observed physical effects. This is the mechanism of the
so-called conventional superconductors, i.e., metals and alloys that start to supercon-
duct below a critical temperature TC which is of the order of several degrees Kelvin
at most. The high-TC superconductors discovered in 1986 by Georg Berdnoz and
Alex Müller (Nobel prize 1987) reach 138◦. The mechanism in this case could be
different, but there is a strong disagreement about it.

25.6.1 Richardson Model for Superconductivity

Anymicroscopic theory is necessarily involved, but amuch simpler and phenological
description credited to Richardson4 has the merit of being readily applicable to finite
systems like nanoscopic clusters and even atomic nuclei, where a similar pairing
between nucleons exists. The Hamiltonian is taken to be

H =
∑

k,σ

εkn̂k,σ + g
∑

k,h

c†k+c
†
−k−c−h−ch+, (25.31)

where the first term is kinetic energy, while the interaction term scatters a pair
of Fermions of opposite spin and wavevector

−→
h to a similar pair with a differ-

ent wavevector. This model Hamiltonian is tantamount to an assumption that some
pairing mechanism is in action. The unpaired electrons remain spectators, and we
forget about them; the dynamics involves pairs, and we rewrite the remaining pair
model as

Hpair =
∑

kh

(2εhδhk − g)b†hbk .

The pair operators b†k = c†k,σc
†
−k,−σ have commutator relations in the pair space

b†2j = 0, [bh, b†k ] = δhk(1 − 2b†kbk), [b†kbk, b†h] = δhkb
†
k . These are called hard core

boson relations. Physically, one can consider that these relations are Boson relations
in almost all cases, and it is a good idea to treat the b operators as if they were
hundred per cent Bosons, with [bk, b†h] = δhk instead of being too choosy. The

4See R.W. Richardson, Phys. Lett. 3, 277 (1963); also Jan Von Delft and Fabian Braun, cond-
mat/9911058.
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model Hamiltonian then becomes the solved model of Sect. 22.5. The Hamiltonian
is diagonalized in the form

H̃ =
∑

k

Ek B
†
k Bk (25.32)

and the interacting ground state is just the ground state of a system of renormalized
bosons B†

k ; one finds that

B†
k = gCk

∑

h

b†h
2εk − Eh

and
1

(gCk)2
=

∑

h

1

2εh − Ek
.

So, the ground state is made up of pairs and the ground state energy for n pairs is the
sum of n eigenvalues found in Sect. 22.5. This is negative, so the Fermi distribution
is superseded by the paired state. Incidentally, the Richardson model with hard core
Bosons is also solved exactly and does not modify the qualitative picture.

25.6.2 Why Perfect Diamagnetism and Zero Resistance?

It is rather common that students go through the intricacies of the BCS theory but fail
to gain an intuitive understanding of the basic properties.Here is a simple explanation.
Consider the current

J0(k) = e�

2mi
(φ†

k∇φk − φk∇φ†
k)

calculated over a plane-wave spinor φk = exp(ikx)√
Ω

χ, where Ω is the volume and χ

a spin function. It is J0(x) = ek
mΩ

; this is a vector, and its average over the ground
state of a superconductor that has no privileged direction vanishes.

Let us switch an external field with H ′ = − e
mc

−→
A .

−→p , in the gauge div
−→
A = 0.

The average of the momentum operator −→p over a pair state (k,−k) is obviously
zero; we know (Sect. 19.3) that −→p , being a one-body operator, has vanishing matrix
elements between pairs with different k. So, there are no matrix elements between
the ground state and the low (paired) excited states; one has to break pairs in order
to excite the system, but this costs an energy exceeding the gap. So, there is no
first-order correction to the wave function, and the ground state is not changed by
the application of a weak external field. The wave function of the superconductor
is rigid; and from this very rigidity, the characteristic properties of superconductors
descend. It is known as London Rigidity, after a theory developed by brothers Fritz
and Heinz London. The electron current density in the presence of the field is

http://dx.doi.org/10.1007/978-3-319-71330-4_22
http://dx.doi.org/10.1007/978-3-319-71330-4_22
http://dx.doi.org/10.1007/978-3-319-71330-4_19
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J(x) = J0(x) − e2

mc
Ψ † AΨ ;

the extra term is diamagnetic. In a normal metal, the carriers are electrons, and
a magnetic field couples to their spin; so, the first order correction to the many-
body wave function is responsible for the fact that in the presence of an external
field, a paramagnetic current flows and prevails over the diamagnetic contribution.
In superconductors,5 however, the carriers are spinless pairs, 〈J0(x)〉 = 0 even in
the presence of the field, and

J(x) = −ne2

mc
A(x); (25.33)

Equation25.33 is known as London equation and describes the phenomenology of
the superconductor, namely, zero resistance and perfect diamagnetism. A curl gives
us

rot J = −ne2

mc
B; (25.34)

a second curl (using rot rot = grad div − ∇2) leads to

∇2B = 4πne2

mc2
B. (25.35)

This yields the perfect diamagnetism, because solving for a half space of a super-
conductor with a magnetic field applied on the vacuum side, the field is found to
decay exponentially inside the superconductor. The London penetration depth is

Λ =
√

mc2
4πne2 . A time derivative of (25.34) then yields

rot
∂ J
∂t

= −ne2

mc

∂ B
∂t

.

Since J = nev and ∂ B
∂t = c∇ × E, this implies that m ∂v

∂t = eE, the electric field
accelerates the charges and there is no damping. The resistance vanishes.

25.7 Quantum Gravity, Unruh Effect and Hawking
Radiation

The Quantum Theory has been extended to comply with Special Relativity. The
need for a relativistic formulation led Dirac to the prediction of antimatter, later
verified experimentally, and Pauli to the Spin-Statistics Theorem. Dirac’s theory of

5I leave aside the rare, more involved case of triplet superconductors, like Sr2RuO4.
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the electron and Quantum Field Theory give an extremely successful description of
Electromagnetism, as well as Weak and Strong Interactions. Condensed Matter and
Nuclear Physics are based on afirm foundation. The gravity field is not something that
propagates in space-time, but is a corrugation of the space-time geometry and does
not lend itself to a canonical quantization procedure like the one in use for the gauge
fields. Possibly, it should not be quantized! At any rate, all the attempts at a quantum
theory of gravity have engaged great minds but have run into trouble so far. The
existence of a quantised gravity wave, the graviton, is doubtful.6 Roger Penrose7

argued that the linearity of Quantum Theory is a problem, when the gravitational
effects of matter are included, since General Relativity is non-linear. The best that
one can do at the present time is to write Dirac’s equation and replace the derivatives
by covariant derivatives, thus enabling the electron to move in a curved space-time.
This approach is called semiclassical gravity theory. However, the observer intro-
duced by Einstein to emit or receive signals at a point of space-time is inherently
classical. It is probably a close relative of the classical apparatus that is needed in
Quantum Mechanics to make wave functions collapse. Nobody can tell. In view of
the central role of Quantum Mechanics in our present understanding of Nature and
its overwhelming success in all other fields, the current state of Theoretical Physics
suffers from schizophrenia. Considering the scientific caliber of the investigators in
the field (starting with Einstein) the problem must be really hard!

Steven Hawking proved an important theorem, stating that any sort of process
can only increase the area of the event horizon of a black hole. For instance, if
two black holes collide and merge, the area of the resultant black hole must exceed
the sum of the areas of the two colliding holes. There is an evident analogy with
the second law of Thermodynamics. But if the black hole has an ever-increasing
entropy, it must also possess a temperature. A temperature implies the exchange of
heat with a thermal bath, and the emission of thermal radiation. On the other hand,
the emission of radiation seems to contradict the very definition of a black hole.
To see how Quantum Mechanics can circumvent this problem, let us consider an
observer in a space ship in free fall near the event horizon of a Schwarzschild black
hole. He sees nothing special around him, in his inertial system, since there is just
a vacuum. Naturally enough, the observer decides to escape from the black hole to
infinity, and turns on powerful rockets, which give strong acceleration to the space
ship. While the space ship escapes, the observer sees particle-hole pairs popping out
of the vacuum by the Unruh effect. Indeed, such a process was predicted by William
Unruh in 1976. An accelerated observer with acceleration a in aMinkowsky vacuum
should observe a thermal bath at temperature

T = �a

2πcKB
; (25.36)

6“Is a Graviton Detectable?”, FreemanDyson, International Journal ofModern Physics A 28 (2013)
1330041.
7See his book: “Fashion, Faith and Fantasy in the new Physics of the Universe”,
ISBN9781400880287.
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this effect has not yet been observed experimentally. At large distances from the
black hole, these particles are seen as Hawking radiation emitted by the black hole.
Adetailed description of the process is quite demanding and requires approximations,
so I come to the conclusions accepted in the Literature. A Schwarzschild black hole
with mass M emits a black body radiation at temperature

T = �c3

8πGMKB
. (25.37)

This formula is striking, because it is the first to contain both G and �, and so
it smells like a start of the unified theory which is greatly desired. In this way a
perfectly isolated black hole should lose mass by radiating a power P = 3.5 1032

M2

Watts, where M is in Kg, and it should evaporate in a time of about 8.4 10−17M3

seconds. The process should start slowly, but speed-up and produce a final bang of
X-Rays. So the black hole would not be the final fate of the matter falling in, which
should be simply waiting for a resurrection in the form of thermal photons, but after
a very, very long time. For a solar mass (2 1030 Kg) the evaporation time has been
evaluated as 1067 years, but its present temperature should actually be much lower
than the background temperature of the Universe, and so it should start growing. If
the Big Bang at the origin of the Universe produced black holes of the right mass, it
would be so kind of them to produce their own small bang right now, thus giving an
experimental support to this theory. No observational confirmation of evaporating
black holes has been obtained so far, and by the way, we also know that the current
theory cannot be fully correct.

25.7.1 Hanbury Brown and Twiss Effect: Bosons
and Fermions

One speaks about Hanbury Brown and Twiss effect when the correlation in the
simultaneous detection of pairs of identical particles shows that the particles fol-
low a non-classical statistics. The original discovery8 was done with photons. The
experiment was aimed at the measurement of the angular radius of Sirius, which
turned out to be 3 billionths of a radiant. In Sect. 4.5.1, a classical account of the
effect is briefly presented, and it is shown that the effect is borne out by the Maxwell
equations. It is also interesting to discuss the effect from the quantum viewpoint, in
terms of the photons that obey Bose statistics.While the simultaneous arrival of pairs
of photons, one in each detector, was not measured, the correlation function (4.12)
represents an average thereof, and would have been constant if the photons arrived at
random. Since different photons are emitted from different atoms, say, 1,000,000km
apart, were it not for the permutation symmetry principle, one would expect that

8R. Hanbury Brown and R.Q. Twiss, “A test of a New Type of Stellar Interferometer on Sirius”,
Nature 178:1046–1048 (1956).

http://dx.doi.org/10.1007/978-3-319-71330-4_4
http://dx.doi.org/10.1007/978-3-319-71330-4_4


372 25 Quantum Statistical Mechanics

the very existence of photons leads to no correlation at all. However, this is not the
case. As pointed out by Fano, the correct reasoning is in terms of pairs of photons.
If two atoms a and b emit two photons that are collected by detectors 1 and 2, there
are two amplitudes: A(a → 1, b → 2) and A(a → 2, b → 1); the probability is
A(a → 1, b → 2)± A(a → 2, b → 1), with the upper sign holding for Bosons and
the lower sign for Fermions.

A direct experimental verification of the above ideas was made possible9 by the
use of ultra-cold He∗ atoms at 0.5 µ◦K. Here, He∗ is a symbol for excited atoms in a
1s2s (singlet or triplet) configurations; such configurations are metastable, because
the 2s→1s decay is strictly forbidden with one photon. The atoms were prepared
and dropped at a hight L above a detector, where they fell by gravity. The detector
allowed for the construction of the normalised correlation function g(2)(Δr), i.e., the
probability of joint detection at two points separated by Δr , divided by the product
of the single detection probabilities at each point. Statistically independent detection
events would give g(2)(Δr) = 1.A value larger than 1 indicates bunching, that is, the
Bose-like tendency to have a larger-than-classical population of the phase-space cell;
a value less than 1 is evidence of Fermion-like anti-bunching. The experiment was
done with 4He∗ (bosons) and 3He∗ (fermions), showing that g(2)(Δr) = 1 beyond a
correlation length on the order of 1mm, with a clear increase at short distances for
Bosons and a decrease for Fermions. The correlation length was l = �t

ms , where t is
the falling time, m the mass and s the vertical size of the source.

The anti-bunching correlation has been experimentally observed by Kiesel et al.
in 2002 and by Kimble et al. for Na atoms in 1977. A Fermionic Hanbury Brown and
Twiss experiment10 has been performed at 2.5 ◦K by partitioning an electron beam
by means of a metallic gate in a two-dimensional electron gas in the quantum Hall
effect regime. The fluctuations in the currents in the two partial beams were found
to be anti-correlated, as expected.

9“Comparison of the Hanbury Brown and Twiss effect for boson and Fermions”, by T. Jeltes et al.,
http://archiv.org/abs/cond-mat/0612278.
10M. Henny et al. Science 284, 296 (1999).

http://archiv.org/abs/cond-mat/0612278


Chapter 26
Quantum Transport and Quantum Pumping

This Chapter is different, in that we deal with many-body and
off-equilibrium problems.

The usual laws of the circuits (Ohm’s law, Kirchoff’s law, and so on) are valid in the
macroscopic world. However, when the linear dimensions are less than an electron
mean free path, which may be on the order of 10nm (22 in Al and 55 in Cu), the
motion of the electrons is ballistic, that is, the circuit obeys quantum laws. While
there is a lot of interest in nano-circuits, these laws have only been partly understood.
It must be stressed that in the quantumworld, the dimensionality has a much stronger
meaning than in classical Physics. In thin films that are extended in the x − y plane,
there are excitations along z, but if the thickness is L, the creation of such excitations
takes energies on the order of �

2mL2 , where m is the electron mass; therefore, the
low-energy and low-temperature Physics is almost completely 2d. In the same way,
nano-wires and Carbon Nano-tubes can be really well described by 1d models. The
theoretical analysis of such systems ismademore difficult by an enhanced importance
of interactions. In low-capacitance tunnel junctions under small bias, one observes
the Coulomb blockade: the presence of an electron in a Quantum Dot prevents other
electrons from jumping, and one observes an increased resistance. Needless to say,
nano-devices are extremely fashionable today in science and technology.

26.1 Characteristics and Transients

One can work with continuous and discrete models of biased systems in parallel1;
for a discrete model, the operator for the current is (22.11),

1M. Cini, Phys. Rev.B 22,5887 (1980) and Phys. Rev. B 89, 239902(E) (2014).
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Jm = eτmn

i�
(c†mcm−1 − c†m−1cm). (26.1)

Assume an independent-particle model in which the system is initially in equilib-
rium at some temperature T , the one-body states |q〉 are occupied with probability
given by the Fermi distribution fq(T ) and the average current vanishes. At time
t = 0, the bias is switched on and the system starts evolving with a final-state Hamil-
tonian Hf (t). The system was initially a determinant of orthonormal spin-orbitals
labelled by q. At time t, it becomes a determinant of evolved states q(t). Are they
still orthonormal? The answer is yes. The evolution operator U (t) is unitary, so it
preserves normalization and orthogonality. Hence,

〈Jmn(t)〉 =
∑

q

fq〈q|U †(t)JmnU (t)|q〉. (26.2)

We can also put the Fermi distribution inside the matrix element, as an operator:

〈Jmn(t)〉 =
∑

q

〈q|U †(t)JmnU (t) f̂ |q〉, (26.3)

with f̂ = (exp(β(H0 − μ) + 1) and with H0 the unbiased Hamiltonian. The states
that were occupied before the switching of the bias are those that carry the current
at all times. Thus, the exact current through site m in a discrete model with hopping
parameter th is given by:

〈Jm〉 = 2eth
�

Im
∑

q

fqg
r
m,q(t)g

r
m−1,q(t)

∗, (26.4)

where the retarded Green’s function is given by:

igrm, j (t) = θ(t)〈 j |U (t)|i〉, (26.5)

and |i〉 is the one-electron wave function localized at site i. In this way, the problem
reduces to a one-body time-dependent calculation. It is instructive to consider the
case when the initial Hamiltonian H = Hi represents an infinite wire (in a discrete
or continuous model), while at time t = 0 the Hamiltonian jumps to Hf = Hi + V̂
where V̂ is a potential that raises the left hand half of the wire by V . Then, for
t > 0, U (t) = exp(−i H f t).

In this way, one can solve, for instance, for the transient current following the
onset of the bias; also, letting t → ∞, one can use the asymptotic expansion tech-
niques to derive the dependence of J on V in the steady state; J (V ) is called the
current-voltage characteristics of the model. A similar treatment is also available for
continuousmodels. In Fig. 26.1, we see that the current is about linear for small V but
it changes slope suddenly and then it starts decreasing. This is evidently an effect of
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Fig. 26.1 Current-Voltage
characteristic of the 1d
continuous model

Fig. 26.2 Current-Voltage
characteristic of the 1d
discrete model

dimensionality. Incidentally, the quantum of conductance2 is G = 2e2

h ∼ 7.7 × 10−5

S, and an experiment by B.J. Van Wees has nicely shown this quantization experi-
mentally in 1988. In Fig. 26.2 the characteristic of the discrete model is shown. We
see a similar trend initially, but when the bias exceeds the bandwidth, the current
vanishes, since the Fermi level of the left half wire is outside the right continuum.
Besides, this formalism allows us to follow the transient effects after the bias is
switched off; in the above examples the current start from zero, then overshoots the
asymptotic t → ∞, oscillates around it a few times and converges to the final value
with a characteristic time given by the inverse band width. Currently man groups
are engaged in developing codes to deal with electron-electron interactions effects
in realistic situations. The development of magnetic and relativistic effects has not
received much attention to date, but will be a challenge in the near future.

26.2 Quantum Pumping

Before closing this topic, it is worth mentioning that among the non-classical phe-
nomena discovered so far, there are several mechanisms of pumping. By this term,
one means the possibility of achieving a current across a circuit by acting locally on
some region of the device, without applying a potential difference between the ends
of the circuit. A first example of this phenomenon was reported by Thouless in 1983,
but several different mechanism has been invented later for sending a charge current
or even a spin current by pumping. Brower3 has shown that there is a connection
between a class of pumping mechanisms, based on varying two parameters in the
Hamiltonian, and the Berry phase. However there are also non-adiabatic mechanisms

2Apart from the factor 2, the existence of this quantum is evident on dimensional grounds.
3P.W Brower Phys. Rev. B58, 10135 (1998).
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Fig. 26.3 Top: in a laterally
connected ring, the choice of
a chirality also defines a
direction along the wire.
Bottom left: a hexagonal ring
and the flux piercing it as a
function of time. The time is
measured in units of �

τ ,
where τ is the matrix
element between
neighboring sites. Bottom
right: charge pumped from
left to right in the wire in the
process; each fluxon through
the ring produces a step

of pumping. A simple example4 is shown in Fig. 26.3. The model is a simple discrete
ring laterally connected to a wire. As shown in the figure, a laterally connected ring
carrying a counterclock current will pump charge to the right. For each flux quantum
swallowed by the ring, there is an amount of charge shifted from left to right. However
this amount decreases if the flux is inserted slowly, and this shows the non-adiabatic
character of the process. Many groups are engaged in the research of spin polarised
quantum pumping that one day could replace electronics with spintronics.

4Michele Cini and Enrico Perfetto, PRB 84 245201 (2011).



Chapter 27
Entanglement, Its Challenges
and Its Applications

The theory makes predictions that shock our idea of reality, but
the experimental tests designed to show the failure of Quantum
Mechanics have shown that it works over large distances and
promises new applications.

27.1 What is the Electron Wave Function in the H Atom?

When we dealt with the H atom in Chap.17, we started from the classical
formulation in terms of an effective particle having a reduced mass (see Sect. 2.5.1).
The same argument works in Quantum Mechanics, with the momenta replaced with
the quantum operators, starting from the Hamiltonian

H = − �
2

2me
∇2

e − �
2

2mp
∇2

p + V (ρ);

here, ∇e acts on re, ∇p acts on rp, and
−→ρ = −→re − −→rp . The wave function

ψ = ψ(
−→re ,

−→rp ) depends on the coordinates and spins of both particles, however
we omit spins, since H does not depend on them in the non-relativistic limit. Next,
we introduce the center of mass

−→
R = me

−→re + mp
−→rp

me + mp
,

the reduced mass μ with
1

μ
= 1

me
+ 1

mp
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and the total mass M = me + mp. For hydrogen,1 μ ∼ me. Using the transformed
Hamiltonian

H = − �
2

2M
∇2

R − �
2

2μ
∇2

ρ + V (ρ),

the problem is separable in the sense that

ψ(
−→re ,

−→rp ) = φ(
−→
R )ψ(−→ρ ); (27.1)

the first factor represents the free motion of the center of mass. Once the quantum
mechanical problem is solved, one is interested in the motions of the electron and of
the proton. Classically one can solve for −→re and −→rp and find the trajectories of both
particles. Since in the quantum problem there are no orbits, one would rather ask for
their wave functions. However,ψ(

−→re ,
−→rp ) is not separable in the form φ(

−→re )ψ(
−→rp ),

that is, cannot be written as a product of an electron wave function times a product
wave function. The particles are entangled, and such individual wave functions do
not exist! For the same reason, one can speak of electron states in molecules and
solids only in the Born-Oppenheimer approximation, and this approximation may
be useful or poor, depending on the problem.

This situation is really amazing. In everyday life, in order to describe the state
of a system, one has to specify the state and the position of the components. In the
motor of a car, every screw has a location, and the mechanic checks that everything
is in place. In Quantum Mechanics, one who knows the state of the system can only
speak of probability of the parts being in a given state if they are entangled.

27.2 EPR Paradox

Another example of entanglement is enlightening. Consider a spin 1
2 and the eigen-

functions α and β of Sz . The two-body basis contains the 4 states

α(1)α(2), α(1)β(2), β(1)α(2), β(1)β(2).

Now, the state α(1)β(2) has particle 1 in α and particle 2 in β, but S2 has no sharp
value. On the other hand, the singlet

|S, M〉 = |0, 0〉 = 1√
2
(|α(1)β(2)〉 − |β(1)α(2)〉) (27.2)

is entangled: the spin of one particle depends on the state of the other. This is not
simply very unusual, but has astonishing consequences. Suppose the system is pre-

1In Positronium, the proton is replaced by a positron, the antiparticle of the electron, having the
same mass, and μ = me

2 . It decays into photons.
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pared in the state |S, M〉 = |0, 0〉 and then the spin of particle 1 is measured. The
results are random, but if the spin is α, then the spin of 2 is granted to be β, and if it
is β, particle 2 must have spin α. This behavior seems to require some sort of hidden
interaction between the particles, but this interaction does not exist. Worse still, the
act of measurement produces an instantaneous collapse of the wave function |0, 0〉,
and the interaction (if it existed) should be instantaneous, no matter how large is the
distance between the particles at the time of measurement. In principle this distance
can be large, and entangled photons emitted by a satellite have recently been found
to be entangled at a distance of 1,200km. According to Relativity, any reasonable
interaction should imply a distance-dependent delay, but the collapse does not take
time.

This feature of QuantumMechanics perplexed the very founders of the subject. In
1935, it was already clear that Quantum Mechanics was enormously successful, but
the fact that it implied such an instantaneous spooky action at a distance, as Einstein
called it, was a paradox. This is now called the E.P.R. paradox put forth in 1935 by
Einstein, Podolsky e Rosen2 in a very enlightening paper, which was of enormous
benefit to Science for the crisis it produced. The criticism of EPR is based on two
main points: the principle of realism and on the principle of locality. The principle of
realism says that anymeasurablemagnitude has awell-defined value regardless of the
fact that it is measured or not. Put it in another way: the moon is there even if nobody
looks at it. This is something that does not appear to be questionable. The principle
of locality states that if observers A and B are causally disconnected, in the sense
of relativity, no measurement made by A cannot affect a measurement performed
by B. There is no way to do an experiment that produces an instantaneous effect
on the Andromeda Galaxy. Now, I show that Quantum Mechanics contradicts both
these apparently bomb-proof assumptions. EPR proposed that Quantum Mechanics
was providing a description of reality that contained much truth, but not all the
truth. The missing truth could be in hidden variables. Including such variables,
one should render the theory deterministic and complete. The nature of the hidden
variables was debated for many years, while the triumph of QuantumMechanics was
complete in all fields ofPhysics fromelementary particles toAstrophysics. Inevitably,
this debate on the hidden variables appeared to be in stand-by, as a philosophical,
verbose issue. Suddenly, in 1964, John Stewart Bell, a Northern Irish physicist,
discovered a fundamental theorem3 showing that the predictions of any hidden
variable theories and those of quantum mechanics can be compared and the issue
can be decided experimentally. Many experiments since then have confirmed the
instantaneous collapse of the wave function, thus supporting Quantum Mechanics. I
shall now outline the physical point of the Bell theorem.

The Nobel laureateMax Born gave an alternative formulation of the EPR paradox
inwhichCharlie produces a beamof singlet pairs |ψ〉 = |+−〉−|−+〉√

2
of spin 1

2 Fermions
and sends a member of each pair to Alice and a member to Bob. If Alice finds
σ A
z = +1, the state collapses to | + −〉 and Bob measures σ B

z = −1, while if Alice

2A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935).
3J.S. Bell, Physics 1, 195 (1964).



380 27 Entanglement, Its Challenges and Its Applications

finds σ A
x = −1, the state collapses to | − +〉 and Bob measures σ B

x = 1. Alice’s
measurement instantly changes the state of Bob’s particle, whatever the distance.
Alice can choosewhich spin component tomeasure after the particles have separated.
Moreover Relativity says that for some observers Bob’s measurement occurs before
Alice’s; for this observer her decision influences the past!

Alice, Bob and Charlie manage to have parallel axes. We shall denote by σ A
x , σ A

z
the results from Alice and by σ B

x , σ B
z those from Bob.

After recording a large number of results, the two lists are combined to compute
a quantity M . This is chosen in such a way that the principle of realism is enough to
make predictions.According to the principle of realism, all theσ values are properties
of the particles that exist independently of the measurement, and since each of them
is ±1, it is clear that both (σ A

z + σ A
x ) and (σ A

z − σ A
x ) may be 0 or ±2. Moreover, if

the sum is 0, the difference is ±2, and if the sum is ±2, the difference is 0. For this
reason we choose the following quantity:

M = (σ A
z + σ A

x )σ B
z + (σ A

z − σ A
x )σ B

x . (27.3)

With this choice, each pair yields ±2.
Then it is clear that the average over many pairs must be such that

|〈M〉| ≤ 2. (27.4)

This is Bell’s inequality in this case, and is the result of the principle of realism. Let
us compare this with the quantum result, using the Pauli matrices. Since

(σ A
z + σ A

x )(−|1A − 1B〉) = −|1A − 1B〉 − | − 1A − 1B〉,

(σ A
z + σ A

x )(−|1A1B〉) = | − 1A − 1B〉 − |1A − 1B〉,

and so on, one finds 〈ψ |M |ψ = −2. This is striking, but still marginally in agreement
with Bell’s inequality.

Next, consider a variant of the Born formulation of the EPR paradox in which
the reference used by Bob is not parallel to Alice’s. The situation becomes crisp
when Alice’s reference is parallel to Charle’s, but Bob has tilted axes. For the sake
of definiteness, assume that, expanding on Alice’s basis, the z axis unit vectors are
ñz = (1,0,1)√

2
and ñx = (−1,0,1)√

2
. For each pair, both Alice and Bob may decide to

measure either the x or the z component of the spin of their particle, and both choose
at random and independently, and record the sequence of ±1 values they obtain (in
units of �

2 , of course). The quantum result is (see next problem)

〈M〉 = 2
√
2. (27.5)

This result definitely disagrees with the Bell inequality. If the principle of realism
holds, Quantum Mechanics is wrong. Thus, experiment can decide, and the experi-
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mental results support Quantum Mechanics (otherwise the reader would have read
the news in the newspaper).

Problem 45 Prove Eq.27.5.

Solution 45 Since

σ B
x = σ .nB

x = −σ A
x + σ A

z√
2

= 1√
2

(
1 i
−i −1

)
,

and

σ B
z =

(
1 −i
i −1

)
,

one contribution is

〈ψ |σ A
z σ B

z |ψ〉 =
[ 〈+ − | − 〈− + |√

2

]
σ A
z σ B

z

[ | + −〉 − | − +〉√
2

]
.

Now let σ A
z act on the left spin; since it is diagonal, one obtains

〈ψ |σ A
z σ B

z |ψ〉 = 1

2
[〈−|σ B

z |−〉 − 〈+|σ B
z |+〉].

Proceeding in this way, one easily gets the result.

27.3 Bell States

Consider a quantum system, such as a spin 1
2 with a two-dimensional Hilbert space;

I shall denote the ortogonal states by |0〉, |1〉. A general state of such a qbit is |ψ〉 =
α|0〉 + β|1〉, whith |α|2 + |β|2 = 1. Now suppose we have two such systems (like,
for instance, an electron spin and a proton spin). A basis state for the states of the
compound system is provided by the set

|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉, (27.6)

where the first factor refers to the first subsystem or particle. According to the rules
of Quantum Mechanics, one is free to use the entangled basis of Bell states

Φ+ = |0〉|0〉+|1〉|1〉√
2

Φ− = |0〉|0〉−|1〉|1〉√
2

Ψ + = |0〉|1〉+|1〉|0〉√
2

Ψ − = |0〉|1〉−|1〉|0〉√
2

(27.7)
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and to transform back to the unentangled4 basis by:

|0〉|0〉 = Φ++Φ−√
2

|0〉|1〉 = Ψ ++Ψ −√
2

|1〉|0〉 = Ψ +−Ψ −√
2

|1〉|1〉 = Φ+−Φ−√
2

.
(27.8)

The paradox already lurks in the equivalence of the entangled basis. We can know
that the state of the system is, say, Φ+, but then we cannot tell the state of individual
particles; this is opposite of the classical situation when it is the knowledge of the
state of the individual screws and wheels that enables the mechanic to tell the state
of a car motor. If we know that the wave function is Φ+, then all we can grant is that
if and only if the first system is in |0〉, then the second is also in |0〉.

27.3.1 The No-cloning Theorem Saves Coexistence with
Relativity

Consider an experiment of the EPR type in which there is a source of pairs of spin 1
2

particles in the singlet states: suppose that one particle in a pair is sent to Alice and
the other to Bob. Alice might decide to send amessage to Bob, encoded in a sequence
of 0 and 1. To transmit a 0 she measures the x component of the spin, and for every
1 the z component. So Bob receives electrons that are eigenstates of the respective
components. The collapse occurs instantly. Now, how could Bob read the message?
Measuring the spin once along any axis he cannot come to any conclusion. If Bob
were able to make numerous clones of each electron he could find out which is the
quantization axis, and read the instant message. If it were possible to clone the state
of particles, the instantaneous transmission of information at any distance would
be possible and Relativity would be violated. So we may say that the No-cloning
Theorem (Sect. 15.6) saves the coexistence of Quantum Theory with Relativity. No
information travels faster than light. On the other hand, since the experimental results
support QuantumMechanics, the principle of realism does not hold and the principle
of locality does not work as expected by E.P.R. Note that Relativity is not involved
in the proof of the no-cloning theorem.

27.4 Quantum Computer

In 1982, R.P. Feynman suggested the possibility of a computer based on the super-
position principle and on quantum effects. Instead of the classical bits of Sect. 5.6.2
one could consider two-component spins as quantum bits or qbits. In this context,
one writes |0〉 ≡ | ↑〉 and |1〉 ≡ | ↓〉. Since one can prepare the qbit in any state of

4I choose the example of an electron spin and a proton spin, because the particles must not be
identical, if we wish to be able to choose between entangled and unentangled bases.

http://dx.doi.org/10.1007/978-3-319-71330-4_15
http://dx.doi.org/10.1007/978-3-319-71330-4_5


27.4 Quantum Computer 383

the form of a linear combination α|0〉 + β|1〉, there are many more ways to prepare
the qbit than the classical bit, but when the information is read, it must be read only
once, and the result is either |0〉 or |1〉. For this reason, the information stored in a
qbit is the same as in a classical bit.5 Qbits can be manipulated by quantum logic
gates, analogous to the classical ones.

The quantum analogue of the classical logic gates is provided by the evolution
of the qbits under the action of some Hamiltonian. The permutation matrices that
represent the action of the classical reversible logical gates are replaced by the unitary
matrices; for instance, one can use of the quantum evolution operator. Therefore, the
quantum logical gates are always reversible and their operation costs no energy. For
a single qbit, one can use the Pauli matrices as gates. The quantum Toffoli gate is the
same as the classical gate, and has 3 qbits in input and in output. The real advantages
of quantum computing comes from the possibility of producing entanglement of
qbits. This means that the quantum gate acting on a product of qbits yields a sum of
product states.

As an example of a calculation in which a quantum computer should perform
better, consider a function fα(x) for which the calculation is demanding, but it is
known that fα(0) and fα(1) can be 0 or 1 and that the values depend on the parameter
α. Suppose one just needs to know if, for a given α, fα takes the same value or
different values for x = 0 and x = 1. David Deutsch has shown theoretically that
a quantum computer would find the result by one calculation of f. The bonus of
quantum computers is the ability to provide global information on the functions to
calculate.

Another notable example has important practical applications in cryptography. It
is the factorization of large numbers into prime factors. This task requires a number
of operations that increases exponentially on a classical computer. P.W. Shor, in
1994, proposed an efficient algorithm for quantum computers that would speed-
up the calculation considerably. Virtually, the quantum computer could lead to an
enormous progress; however, there are great difficulties.

A basic problem is due to the fact that the quantum system is never perfectly
isolated, and sooner or later is subject to the loss of coherence, or decoherence
(Sect. 19.6). The basic idea is the following. Consider a spin in a state |ψ〉 =
α| ↑〉+β| ↓〉with |α| = |β| = 1

2 .Our quantum computer could use the information
contained in the relative phase of α and β and related to the way the spin evolves
in an applied magnetic field. However, if the spin is not well insulated, there is an
unknown magnetic field. In other words, part of the Hamiltonian is unknown and
describes the interaction with some external system X. The decoherence consists
in the fact that if X interacts in a different way with | ↑〉 and | ↓〉, and behaves as
a detector of the spin state, within some characteristic time, the phase relationship
is lost. This is analogous to what happens in the double-slit experiment if one tries
to reveal which way the particle passes: ipso facto, such an attempt destroys the

5This is the physical meaning of the Holevo theorem which puts an upper limit on the classical
information that can be extracted by Bob by performing measurements on a quantum state, after
Alice has encoded classical information in it.

http://dx.doi.org/10.1007/978-3-319-71330-4_19
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Fig. 27.1 Upper picture:
initial situation, with Alice
that can handle a qbit and a
particle in an entangled pair,
and Bob that can act on the
other particle. Lower picture:
after the measurement by
Alice, Bob has the qbit and
Alice the information needed
by Bob to reproduce the
initial qbit state

interference and produces a classic behavior. One can say that the classical behavior
emerges naturally when the quantum system is so complex that we can not know all
the Hamiltonian, and then we lose the effects of interference.

27.5 Teleportation

In 1993 the word teleportation, familiar in science fiction, first appeared in Physical
Review Letters6 in a very often referenced theoretical paper. The thought exper-
iment involves two characters, Alice and Bob (see Fig. 27.1). Alice has a qbit
ψA = α|0〉A + β|1〉A; the notation means that only Alice can act on the qbit, which
must be transmitted to Bob. Neither Alice nor Bob have any information about α and
β, but they share an entangled pair of the Bell Ψ − type

Ψ − = |0〉A|1〉B − |1〉A|0〉B√
2

. (27.9)

The 3 particles are in the following state:

Ω3 = ψAΨ
−. (27.10)

Expanding Ω3 = (α|0〉A + β|〉A) |0〉A|1〉B−|1〉A |0〉B√
2

, one finds:

√
2Ω3 = α|0〉A|0〉A|1〉B + β|1〉A|0〉A|1〉B − α|0〉A|1〉A|0〉B − β|1〉A|1〉A|0〉B .

6Charles H. Bennet, Gilles Brassard, Claude Crepeau, Richard Josza, Asher Peres and William K.
Wootters, Phys. Rev. Letters 70 1895 (1993).
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In terms of Bell states,

2Ω3 = |Φ+〉A(α|1〉B − β|0〉B)

+|Φ−〉A(α|1〉B + β|0〉B) + |Ψ +〉A(β|1〉B −α|0〉B) +
|Ψ −〉A(β|1〉B + α|0〉B). (27.11)

Now, Alice measures the state of her two particles, thereby performing the instan-
taneous teleportation according to the following scheme, in which Bob’s qbit is
rewritten in spinor notation:

Alice’s pair Bob’s qbit Restoring Operator
|Φ+〉 α|1〉 − β|0〉 σy
|Φ−〉 α|1〉 + β|0〉 σx
|Ψ +〉 β|1〉 − α|0〉 σz
|Ψ −〉 β|1〉 + α|0〉 1

If Alice finds Ψ −, then Bob has already got α|0〉B + β|1〉B , while in the other
cases, he must apply a restoring operator, as shown in the table. He can be sure about
the state of his qbit after he receives a call from Alice informing him of the result
of her measurement. Therefore, faster then light teleportation is not allowed. Alice
does not know the original qbit that she destroyed in the measurement. Not even Bob
can know α and β and the No-Cloning theorem forbids the fabrication of the copies
that would be necessary for this investigation. However, the quantum state has been
transferred from Alice to Bob. In 2017, Chinese scientists teleported a photon from
Tibet to a satellite in orbit, up to 1,400km above the Earth’s surface (see https://
www.space.com/37506-quantum-teleportation-record-shattered.html).

https://www.space.com/37506-quantum-teleportation-record-shattered.html
https://www.space.com/37506-quantum-teleportation-record-shattered.html
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